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Memorization (– key terms –)

Chapter 1 - Preliminaries

1.1 Probability Spaces

1 probability space, measure space

probability space: (Ω,F , P ) - Ω outcomes, F events, and P : F → [0, 1] assigns probabilities to events

measure space: (Ω,F) - Ω outcomes, F events

2 σ-field/algebra, σ-field generated by A
σ-field: F a non-empty collection of subsets of Ω satisfying:

i A ∈ F =⇒ AC ∈ F

ii Ai ∈ F countable sequence, then ∪iAi ∈ F

σ-field generated by A: smallest σ-field containing the collection A, denoted σ(A)

3 measure, probability measure

measure: “non-negative countable additive set function”, i.e. µ : F → R such that

i µ(A) ≥ µ(∅) for all A ∈ F

ii Ai ∈ F countable sequence of disjoint sets, then µ(∪iAi) =
∑

i µ(Ai)

probability measure: µ(Ω) = 1, usually denoted P

4 monotonicity, subadditivity

µ a measure on (Ω,F)

monotonicity: A ⊆ B =⇒ µ(A) ≤ µ(B)

subadditivity: A ⊂ ∪iAi =⇒ µ(A) ≤
∑

i µ(Ai)

5 continuity from below/above

µ a measure on (Ω,F)

if Ai ↑ A (A1 ⊂ A2 ⊂ · · · and ∪iAi = A) then µ(Ai) ↑ µ(A)

if Ai ↓ A (A1 ⊃ A2 ⊃ · · · and ∩iAi = A) then µ(Ai) ↓ µ(A)

6 discrete probability spaces

Ω a countable set, F all subsets of Ω

P (A) =
∑
ω∈A

p(ω)

where p(ω) ≥ 0 and
∑

ω∈Ω p(ω) = 1 [i.e. each ω gets assigned its own point probability and sets are
simply sums of the point probabilities]

Discrete uniform probability - Ω finite and p(ω) = 1/|Ω| for all ω ∈ Ω.

7 Borel sets

the smallest σ-algebra containing the open sets in Rd (with the usual Euclidean topology)
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8 Stieltjes measure function

A function F : R→ R such that F is (i) nondecreasing and (ii) right continuous (limy↓x F (y) = F (x))

9 Lebesgue measures on R and Rd

R: The unique measure on (R,R) such that µ((a, b]) = b− a.

Rd: The unique measure on (R,R) such that µ(A) = area of A for all finite rectangles A.

10 semi-algebra, algebra (field), algebra generated by S
semi-algebra: S such that (i) closed under finite intersection, (ii) S ∈ S implies SC is a finite disjoint
union of sets in S
algebra: A such that (i) closed under finite intersections, (ii) closed under complements (it follows
closed under finite unions)

algebra generated by S: S, collection of finite disjoint unions of sets in S (is an algebra)

11 measure on an algebra

given algebra A a measure on A, µ is a set function µ : A → R such that

(i) µ(A) ≥ µ(∅) = 0 for all A ∈ A and

(ii) Ai ∈ A are disjoint and their union is in A, then µ(∪iAi) =
∑

i µ(Ai).

12 σ-finite

a measure µ on an algebra A is σ-finite if there is a sequence of sets An ∈ A such that µ(An) <∞ for
all n and ∪nAn = Ω (could also assume that An ↑ Ω or the An are disjoint)

13 countably generated σ-field/algebra

F , a σ-field is countably generated if there is a countable collection C ⊂ F such that σ(C) = F

1.2 Distributions

14 random variable (F-measurable)

a real valued function X : Ω → R such that for every Borel set B ⊂ R, X−1(B) ∈ F , the specific
σ-field on Ω (if specification needed, X is F-measurable)

15 indicator function of a set

example of a random variable where A ∈ F

1A(ω) =

{
1 ω ∈ A
0 ω /∈ A

16 distribution (function) of a random variable

When X is a random variable on a probability space (Ω,F , P ) then its distribution is a probability
measure, µ, on R given by

µ(A) = P (X ∈ A) = P (X−1(A))

the associated distribution function is given by F (x) = P (X ≤ x) = P (X−1((−∞, x]))

17 equal in distribution

two random variables whose resulting distributions (measures) on R are the same, this occurs exactly

when they have the same distribution function also, denoted by X
d
= Y
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18 density functions

a function f such that the distribution function F (x) = P (X ≤ x) satisfies F (x) =
∫ x
−∞ f(y)dy.

19 uniform distribution on (0, 1)

density function f(x) = 1 where x ∈ (0, 1) (0 everywhere else)

F (x) =


0 x ≤ 0

x 0 ≤ x ≤ 1

1 x > 1

20 absolutely continuous distribution function

a distribution function on R is absolutely continuous if it has a density function

21 discrete probability measure/distribution function

probability measure P with a countable set S such that P (SC) = 0 (example point mass below)

22 point mass distribution function

F (x) = 1 for x ≥ 0 (or another point of your choosing) and F (x) = 0 for x < 0.

this is a discrete probability measure realized by the set S = {0}

1.3 Random Variables

23 measurable map

a function X : Ω → S between measurable spaces (Ω,F) and (S,S) (F and S σ-fields) such that for
all B ∈ S

X−1(B) = {ω : X(ω) ∈ B} ∈ F

24 random variable, random vector

random variable: a measurable function Ω→ (R,R)

random vector: a measurable function Ω→ (Rd,Rd), d > 1

25 σ-field generated by a measurable map

Given X : Ω→ S with (S,S),

σ(X) = {{X ∈ B} : B ∈ S} = {{ω : X(ω) ∈ B} : B ∈ S}

26 properties of combining measurable maps

composition of measurable maps is measurable

summation of a finite number of measurable maps is measurable

X1, . . . , Xn random variables, and f : Rd → R measurable, then f(X1, . . . , Xn) measurable

inf, sup lim sup, lim inf of sequences of random variables are random variables

27 random variables converging almost surely

Given random variables Xi : Ω→ R,

Ω0 = {ω : lim
n
Xn(ω) exists }

the Xi’s converge almost surely (or ‘almost everywhere’) when P (Ω0) = 1.
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28 extended real line

R∗ = [−∞,∞] with Borel sets generated by [−∞, a), (a, b), (b,∞]

1.4 Integration

29 simple function

ϕ =
∑n

i=0 ai1Ai where Ai are disjoint sets with µ(Ai) <∞
30 integration of simple functions∫

ϕdµ =

∫ n∑
i=0

ai1Aidµ =

n∑
i=0

aiµ(Ai)

31 φ ≥ ψ almost everywhere

φ ≥ ψ almost everywhere ⇐⇒ µ({ω : φ(ω) < ψ(ω)}) = 0

32 integral of bounded functions∫
fdµ = sup

ϕ≤f

∫
ϕdµ = inf

ψ≥f

∫
ψdµ

33 integral of non-negative functions∫
fdµ = sup

0≤h≤f

{∫
hdµ : h bounded, µ({x : h(x) > 0}) <∞

}
34 integrable functions∫
|f |dµ <∞ (since |f | is non-negative function)

35 integral of (integrable) functions

f+ = max(f, 0) and f− = max(−f, 0)

so that f = f+ − f− and f+, f− are both non-negative functions∫
fdµ =

∫
f+dµ−

∫
f−dµ

36 basic properties of integrals

If f, g are both integrable/non-negative/bounded/simple:

(i) If f ≥ 0 a.e. then
∫
fdµ ≥ 0

(ii) For all a ∈ R,
∫
afdµ = a

∫
fdµ

(iii)
∫
f + gdµ =

∫
fdµ+

∫
gdµ

(iv) If g ≤ f a.e.
∫
gdµ ≤

∫
fdµ

(v) If g = f a.e.
∫
gdµ =

∫
fdµ

(vi)
∣∣∫ fdµ∣∣ ≤ ∫ |f |dµ
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1.5 Properties of the Integral

37 Jensen’s Inequality (integral)

If ϕ is convex (technical: λϕ(x) + (1− λ)ϕ(y) ≥ ϕ(λx+ (1− λ)y), λ ∈ (0, 1))

µ probability measure, and f and ϕ(f) integrable

ϕ

(∫
fdµ

)
≤
∫
ϕ(f)dµ

38 ||f ||p

||f ||p =

(∫
|f |pdµ

)1/p

for 1 ≤ p <∞
39 Hölder’s Inequality (integral)

If p, q ∈ (1,∞) and 1
p + 1

q = 1 then ∫
|fg|dµ ≤ ||f ||p||g||q

40 Cauchy-Schwarz Inequality∫
|fg|dµ ≤ ||f ||2||g||2 =

√∫
f2dµ

√∫
g2dµ

41 Bounded Convergence Theorem

Finite measure set E (‘bounded’: µ(E) <∞) and fn supported on E (vanishes on EC)

fn bounded (i.e. |fn| ≤M for some M)

fn → f in measure (measure zero set in the limit |fn(ω)− f(ω)| > ε)∫
fdµ = lim

n→∞

∫
fndµ

42 Fatou’s Lemma

fn ≥ 0 =⇒ lim inf
n→∞

∫
fndµ ≥

∫ (
lim inf
n→∞

fn

)
dµ

43 Monotone Convergence Theorem

fn ≥ 0 and fn ↑ f =⇒
∫
fndµ ↑

∫
fdµ

44 Dominated Convergence Theorem

If fn → f a.e., |fn| ≤ g for all n where g is integrable then∫
fndµ→

∫
fdµ
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1.6 Expected Value

45 expected Value (mean) of R.V. (and basic properties)

X ≥ 0 a random variable on (Ω,F , P ) then

EX =

∫
XdP

(may be infinite)

By integral properties, E(X+Y ) = EX+EY , E(aX+b) = aE(X)+b and X ≥ Y implies EX ≥ EY .

46 Jensen’s Inequality for EX

If ϕ is convex, then E(ϕ(X)) ≥ ϕ(E(X)) where both exist

47 Hölder’s Inequality for EX

p, q ∈ [1,∞] with 1/p+ 1/q = 1
E|XY | ≤ ||X||p||Y ||q

where ||X||p = (E|X|p)1/p for p <∞ and ||X||∞ = inf{M : P (|X| > M) = 0}
48 Chebyshev’s Inequality

ϕ : R→ R with ϕ ≥ 0. For Borel set A ∈ R let iA = inf{ϕ(y) : y ∈ A} (‘min‘ value of ϕ on A)

iAP (X ∈ A) ≤ E(ϕ(X);X ∈ A) ≤ E(ϕ(X))

A common version:
P (X ≥ y)f(y) ≤ Ef(x)

for example when EX = 0

a2P (|X| ≥ a) ≤ EX2 =⇒ P (|X| ≥ a) ≤ a−2 var(X)

49 Fatou’s Lemma for EX

lim inf
n→∞

EXn ≥ E(lim inf
n→∞

Xn)

50 Monotone convergence theorem for EX

Xn ≥ 0 and Xn ↑ X then EXn ↑ EX
51 dominated convergence theorem for EX

Xn → X and |Xn| ≤ Y for all n and EY <∞ then EXn → EX

52 bounded convergence theorem for EX

Xn → X and |Xn| ≤M for all n then EXn → EX

53 mean and variance of a R.V.

mean is just expected value, µ = EX

if EX2 exists, then var(X) = E(X − µ)2

54 kth moment of X

E(Xk)
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55 computing EX integrals (change of variable formula)

Measure space (S,S, P ) X a random element (variable?) on (S,S) with µ(A) = P (X ∈ A) =
P (X−1(A))

If f measurable function (S,S)→ (R,R) with f ≥ 0 or E|f(X)| <∞ then

Ef(x) =

∫
S
f(y)µ(dy) =

∫
fdµ

If X has density function F (x) =
∫ x
−∞ g(x)dx then

Ef(X) =

∫ ∞
−∞

f(x)g(x)dx

56 Bernoulli Distribution

this is a discrete distribution

p some parameter, P (X = 1) = p and P (X = 0) = 1− p
57 Poisson Distribution

this is a discrete distribution

λ some parameter, P (X = k) = e−λλk/k! for k = 0, 1, 2, . . .

58 Other formulas for Expected Values

If X ≥ 0 EX =
∑∞

i=0 P (X ≥ i) or EX =
∫∞

0 P (X ≥ x)dx (useful when nice formula for P (X ≥ x))

so for example E|X| =
∫∞

0 P (|X| > x)dx (can be derived by Fubini’s Theorem)

1.7 Product Measures, Fubini’s Theorem

59 product measure

Take (X,A, µ1) and (Y,B, µ2) with σ-finite measures, then µ = µ1 × µ2 is the unique measure on
X × Y such that µ(A×B) = µ1(A)µ2(B)

60 Fubini’s Theorem

Fubini’s gives conditions for switching multiple integrals using product spaces

Fubini’s Theorem: Let µ1, µ2 be σ-finite with µ = µ1 × µ2. If f ≥ 0 or
∫
|f |dµ <∞ then∫

X

∫
Y
fdµ2dµ1 =

∫
X×Y

fdµ =

∫
Y

∫
X
fdµ1dµ2

Typical application to summation/sum+integral combinations

Chapter 2 - Law of Large Numbers

2.1 Independence

61 independence of σ-fields, random variables

independence for σ-fields: (finite version)
F1, . . . ,Fn σ-fields (all contained in some larger σ-field with P probability measure) are independent
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if for any choice of Ai ∈ Fi for all i = 1, . . . , n

P (∩iAi) =
∏
i

P (Ai)

(infinite collections are independent if all finite sub-collections are independent)

Independence for random variables:
X1, . . . , Xn random variables from (Ω,F , P )→ (R,R) are independent if σ(Xi)’s are all independent
which is equivalent to when

P (X1 ∈ C1, . . . , Xn ∈ Cn) = P (∩i{Xi ∈ Ci}) =
∏
i

P (Xi ∈ Ci)

for any collection of Ci ∈ R
62 Independence of events and arbitrary collections of events

Most simply, P (A ∩B) = P (A)P (B)

Independence of Events:
Generally, A1, . . . , An are independent events in (Ω,F , P ) if for any sub-collection of sets (i.e. I ⊆
{1, 2, . . . , n}

P (∩i∈IAi =
∏
i∈I

P (Ai)

Independence of Collections of Sets: Given A1, . . . ,An collections of sets, these are independent
if for any choice of Ai ∈ Ai of a subcollection (i.e. I ⊆ {1, . . . , n}) we have Ais are independent. Can
always assume Ω ∈ Ai and take the full collection every time.

63 Pairwise Independent, how it differs from Independent

Any pairs are independent (P (A ∩B) = P (A)P (B))

Independent =⇒ Pairwise Independent but pairwise is strictly weaker

Example:

X1, X2, X3 with P (Xi = 0) = P (Xi = 1) = 1/2
A1 = {X2 = X3}, A2 = {X1 = X3}, and A3 = {X1 = X2}
A1 ∩A2 = A1 ∩A2 ∩A3 so the probabilities are the same, but P (Ai) = 1/2 so adding A3 changes the
RHS of the independence equation.

64 π-system, λ-system, relationship to σ-fields

π-system - closed under intersection

λ-system - Ω ∈ L, countable unions of increasing sets contained, and set subtraction contained (A ⊆
B ⇒ B ∩AC ∈ L)

π − λ systems ⇐⇒ σ-algebra, so π,λ kinda split up the σ algebra properties

65 Dynkin’s π-λ Theorem

π-λ Theorem: If P is a π-system and L is a λ-system with P ⊆ L then σ(P) ⊂ L.

π-system - closed under intersection

λ-system - Ω ∈ L, countable unions contained, and set subtraction contained (A ⊆ B ⇒ B ∩AC ∈ L)

66 distribution of collections of independent variables

Y = (X1, . . . , Xn) for independent random variables Xi each with distribution µi(Ai) = P (Xi ∈ Ai)
(so Y a random vector) then the distribution measure for Y is µ = µ1 × · · ·µn where µ(A1 × An) =∏
i µi(Ai).
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67 expected value of product of independent variables

If X1, . . . , Xn are independent variables and either all Xi ≥ 0 OR all E|Xi| <∞ then

E

(
n∏
i=1

Xi

)
=

n∏
i=1

E(Xi)

68 convolution (of distribution functions)

F and G distribution functions

(F ∗G)(z) =

∫
F (z − y)dG(y) =

∫
F (z − y)dµ

69 distributions of sums of variables

If X,Y are independent, with distribution functions F (x) = P (X ≤ x) and G(y) = P (Y ≤ y) (and
µ(A) = P (Y ∈ A) distribution measure for Y ),

P (X + Y ≤ w) =

∫
F (w − y)dG(y) =

∫
F (w − y)dµ

70 density function for sums of variables

Given X,Y independent R.V.s with density functions f, g respectively, the density function for X+Y

is

∫
R
f(x− y)g(y)dy

71 Gamma density (parameters α, λ)

Density function f(x) = λαxα−1e−λx/Γ(α) for x ≥ 0 (and f = 0 when x < 0) where Γ(α) =∫∞
0 xα−1e−x, related to factorials.

72 sums of exponential distributions

If X1, . . . , Xn are all independent exponential distributions with λ, then X1 + · · · + Xn is Gamma
distribution with α = n and λ = λ

73 sums of normal distributions

N(µ, a) +N(ν, b) = N(µ+ ν, a+ b) (assuming independence!)

2.2 Weak Laws of Large Numbers

74 convergences almost surely (almost everywhere)

µ({x : fn(x) 6= f(x)})→ 0

75 Lp convergence

E|fn − f |p → 0

76 convergence in probability

for all ε > 0, P ({x : |fn(x)− f(x)| > ε})→ 0 (equivalent to ≥ ε)
77 i.i.d variables

independent and identically distributed variables

same probabilities/expected values/variances etc and independent

example: repeated coin tosses, all have the same probabilities but do not affect each other
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78 Weak Law of Large Numbers

Weak Law of Large Numbers: Let X1, X2, . . . be i.i.d with finite variance (can weaken to E|Xi| <
∞). Let Sn = X1 +X2 + · · ·+Xn and µ = EX1. Then Sn/n→ µ converges in probability .

2.3 Borel-Cantelli Lemmas

79 Borel-Cantelli Lemma

Borel-Cantelli Lemma

∞∑
n=1

P (An) <∞ ⇒ P (An i.o.) = 0 = P (lim sup
n→∞

An) = P ( lim
n→∞

∪∞m=nAm)

80 Second Borel-Cantelli Lemma

Second Borel-Cantelli Lemma: If An are independent and
∑
P (An) =∞ then

P ({x : x ∈ An infinitely often}) = P (lim sup
n→∞

An) = P ( lim
n→∞

∪∞m=nAm) = P (An infinitely often) = 1

2.4 Strong Law of Large Numbers

81 Strong Law of Large Numbers

SLLN: Let X1, X2, . . . be i.i.d. with EXi = µ and EX4
i <∞. (can weaken to E|Xi| <∞) Then

Sn
n

=
X1 + · · ·Xn

n

a.s.−−→ µ

Generalizations:
Let X1, X2, . . . be pairwise independent and identically distributed with EXi = µ and E|Xi| < ∞.
Then

Sn
n

=
X1 + · · ·Xn

n

a.s.−−→ µ

Let X1, X2, . . . be i.i.d with EX+
i =∞ and EX−i <∞ (hence EXi =∞). Then

Sn
n

=
X1 + · · ·Xn

n

a.s.−−→ EXi =∞

2.5 Convergence of Random Series

82 tail σ-field

T only depends on tail behavior, i.e. changing finitely many values does not affect it

Formally, Fn = σ(Xn, Xn+1, . . .) and T = ∩nFn
Examples: {limn→∞ Sn exists} ∈ T , Bn ∈ R then {Xn ∈ Bn i.o.} ∈ T
83 Kolmogorov’s 0-1 Law

X1, X2, . . . are independent, then A ∈ T implies P (A) ∈ {0, 1} (almost always or almost never)
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84 exchangeable σ-field and Hewitt-Savage 0-1 Law

exchangeable σ-field invariant sets under finite permutation of values/variables (contains tail σ-field)

Hewitt-Savage 0-1 Law: If X1, X2, . . . i.i.d then A ∈ E implies P (A) ∈ {0, 1}
85 Kolmogorov’s Maximal Inequality

X1, X2, . . . , Xn independent with EXi = 0 and var(Xi) <∞, Sn = X1 + · · ·Xn as usual

P

(
max

1≤k≤n
|Sk| ≥ x

)
≤ x−2 var(Sn)

86 General Idea of Kolmogorov’s Three Series Theorem

gives (3) equivalent conditions on Xi and their truncations to show that the series converges a.s.

Chapter 3 - Central Limit Theorems

3.1 The De Moivre-Laplace Theorem

87 Stirling’s Formula

n! ∼ nne−n
√

2πn

3.2 Weak Convergence

88 weak convergence

Fn ⇒ F∞ when limn Fn(y) = F∞(y) for all points y where F∞ is continuous.

Equivalently, Xn ⇒ X∞ or µn ⇒ µ∞ where µi is the probability measure for Xi.

89 (equivalent) properties of weak convergence

Xn ⇒ X∞ if and only if Eg(Xn)→ Eg(X∞) for all bounded continuous functions g.

Xn ⇒ X∞ if and only if there exists Yn with the same distribution such that Yn → Y∞ a.s.

Also some equivalent conditions in terms of open/closed/Borel sets

90 Helly’s Selection Theorem/vague convergence

Given a sequence Fn of dist. fun.

There is a subsequence Fn(k) that ‘weakly’ converges to a function G that is right continuous and
nondecreasing (but may not go to 0,1 in the limits).

91 tight

the sequence Fn is tight if for every ε > 0 there is an Mε so that

lim sup
n→∞

1− Fn(Mε) + Fn(−Mε) ≤ ε ⇐⇒ 1− ε ≤ lim inf
n→∞

Fn(Mε)− Fn(−Mε)

92 tightness criteria

Fn has a subsequence converging weakly to G and G is a distribution function if and only if Fn are
tight.
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3.3 Characteristic Functions

93 characteristic function

ϕX(t) = E(eitX) = E(cos(tX)) + iE(sin(tX))

94 properties of characteristic functions

ϕ(0) = 1 ϕ(−t) = ϕ(t) |ϕ(t)| ≤ E|eitX | ≤ 1 ϕaX+b(t) = ϕ(at)eitb

95 combining characteristic functions

X,Y independent =⇒ ϕX+Y (t) = ϕX(t)ϕY (t)

96 characteristic function examples

Normal distribution ϕ(t) = e−t
2/2

coin flip ϕ(t) = EeitX = 1
2e
it + 1

2e
−it = cos(t)

97 inversion formula for characteristic functions

1-1 correspondence between ϕ and distribution functions

If ϕ(t) =
∫
eitxµ(dx) then

µ(a, b) + 1
2µ({a, b}) = lim

T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
ϕ(t)dt

If
∫
|ϕ(t)|dt <∞ then µ has density

f(y) =
1

2π

∫
e−ityϕ(t)dt

3.4 Central Limit Theorems

98 i.i.d. Central Limit Theorem

X1, X2, . . . i.i.d. with EXi = µ and var(Xi) = σ2 ∈ (0,∞)

Sn − nµ
σ
√
n
⇒ χ

where χ is the standard normal distribution (µ = 0, σ = 1)

99 Lindeberg-Feller Central Limit Theorem

Triangular array Xn,m independent variables for 1 ≤ m ≤ n where EXn,m = 0 and

(i)
∑n

m=1EX
2
n,m → σ2 > 0 as n→∞

(ii) ∀ε > 0
∑n

m=1E(|Xn,m|2; |Xn,m| > ε)→ 0 as n→∞

Sn = Xn,1 + · · ·+Xn,n ⇒ σχ

3.6 Poisson Convergence

100 Poisson Convergence Theorem

Xn,m independent Bernoulli variables for 1 ≤ m ≤ n with P (Xn,m = 1) = pn,m = 1− P (Xn,m = 0)
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(i)
∑n

m=1 pn,m → λ > 0 as n→∞

(ii) max1≤m≤n pn,m → 0 as n→∞

Sn = Xn,1 + · · ·+Xn,n ⇒ Poisson(λ)

101 Poisson Processes

Generalizes Poisson convergence to larger class of variables taking non-negative integer values and still
converging to Poisson(λ).

3.10 Limit Theorems in Rd

102 distribution functions in Rd

F (y) = P (X ≤ y) = P (Xi ≤ yi) for all i.

Note that Fi(yi) = limn→∞ F (n, . . . , n, yi, n, . . . , n)

103 characteristic functions in Rd

φ(t) = Exit·X = Eei(t1X1 + · · ·+ tdXd)

104 Central Limit Theorem in Rd

X1, X2, . . . i.i.d random vectors with EXi = µ∈ Rd with finite covariance Γi,j = E(Xi − µi)(Xj − µj),

Sn − nµ√
n

⇒ Nd(0,Γ)

where Nd(0,Γ) is the multivariate Gaussian with mean 0 and covariance Γ.

Chapter 4 - Martingales

4.1 Conditional Expectation

105 conditional expectation

If E|X| <∞ then E(X|F) is any random variable such that

(i) E(X|F) ∈ F (ii) ∀A ∈ F ,
∫
A
E(X|F)dP =

∫
A
XdP

This exists (by Radon-Nikodym Thm/derivatives) and is unique up to a.e.

106 major examples of conditional expectation

• Perfect information, X ∈ F then E(X|F) = X

• No information, X and F are independent then E(X|F ) = EX

• Ω1,Ω2, . . . disjoint partition of Ω then for F = σ(Ω1,Ω2, . . .)

E(X|F) =
E(X; Ωi)

P (Ωi)
on Ωi
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107 P (A|F), P (A|B), E(X|Y )

If A,B are events, F is a σ-field, and X,Y random variables,

P (A|F) = E(1A|F) P (A|B) =
P (A ∩B)

P (B)
E(X|Y ) = E(X|σ(Y ))

108 Properties of E(X|F)

Where all conditional expectations are defined (i.e. E|X| <∞ for E(X|F)

• E(aX + Y |F) = aE(X|F) + E(Y |F) (regardless of independence)

• X ≤ Y implies E(X|F) ≤ E(Y |F)

• Xn ≥ 0 and Xn ↑ X (and E|X| <∞) then E(Xn|F) ↑ E(X|F)

• If F ⊂ G then E(E(X|F)|G) = E(E(X|G)|F) = E(X|F)

• If X ∈ F (and E|XY |, E|Y | <∞) then E(XY |F) = XE(Y |F)

109 Jensen’s Inequality for Conditional Probability

ϕ convex, X random variable with E|X|, E|ϕ(X)| <∞ (so that both cond. exp exist) then

ϕ(E(X|F)) ≤ E(ϕ(X)|F)

110 regular conditional probabilities

X : (Ω,F)→ (Ω,F) the identity map, then µ : Ω× Ω→ [0, 1] is a regular conditional probability if

• for every A ∈ F , ω 7→ µ(w,A) is a version of P (A|F) = E(1A|F)

• for every ω ∈ Ω, A 7→ µ(w,A) is a probability measure

These reg. cond. prob. exist for (R,R) and other measure spaces that are measurably isomorphic to
it (i.e. ‘nice’)

Motivation: If µ is a regular conditional probability, E(g(X)|F) =
∫
g(x)µ(w, dx).

4.2 Martingales, Almost Sure Convergence

111 filtration, and adapted to filtration

F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · · an increasing sequence of σ-fields is a filtration

if Xn is a sequence of random variables with Xn ∈ Fn (i.e. Xn is Fn-measurable) then Xn is adapted
to the filtration Fn

112 martingale, submartingale, supermartingale

Xn is martingale w.r.t Fn filtration if

(i) E|Xn| <∞ for all n (so cond. exp. exist)

(ii) Xn adapted to Fn (so Xn ∈ Fn)

(iii) E(Xn+1|Fn) = Xn [E(Xn+1|Fn) ≤ Xn is supermartingale, E(Xn+1|Fn) ≥ Xn is submartingale]

By induction, for any n > m, E(Xn|Fm) = Xm

X is submartingale ⇐⇒ −X is supermartingale
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113 linear martingales

Take S0 a constant, and Yn i.i.d random variables with mean 0, then Xn = S0 + Y1 + · · · + Yn is
martingale with respect to Fn = σ(Y1, . . . , Yn). (if mean ≤ 0 then supermartingale, and mean ≥ 0
gives submartingale).

This is also an example of a random walk!

114 functions of martingales

If ϕ is (increasing) convex function, and Xn is (sub)martingale, then ϕ(Xn) is submartingale. (proof
by Jensen’s Inequality for Conditional Expectations)

Example: |Xn|p submartingale, (Xn − a)+ submartingale, Xn supermartingale then min(Xn, a) is
supermartingale too

115 predictable sequence

Hn random variables such that Hn ∈ Fn−1 (i.e. Hn only depends on information at time n− 1)

If Hn is a betting scheme, and Xn is the martingale of money earned at time n betting a single unit
each round, then

(H ·X)n =

n∑
m=1

Hm(Xm −Xm−1)

is the earnings of Hn at time n.

Theorem: If Xn is a (sub/super)martingale, and Hn is a predictable sequence with Hn ≥ 0 and each
Hn bounded, then (H ·X)n is a (sub/super)martingale as well.

116 Classical Martingale Betting Strategy

“Double down on losses”

Hn =

{
2Hn−1 Xn−1 −Xn−2 = −1 (loss @ n− 1)

1 Xn−1 −Xn−2 = 1 (win @ n− 1)

117 stopping times

N , a random variable, is a stopping time if {N = n} ∈ Fn for all n (i.e. the decision to stop at time
n must be decidable with the information at time n)

Theorem: If Xn is a (sub/super)martingale, then XN∧n = Xmin(N,n) is a (sub/super)martingale.

118 Upcrossing Inequality

If Xm is a submartingale, and a < b with Un the number of upcrossings of Xm of (a, b), then

(b− a)EUn ≤ E(Xn − a)+ − E(X0 − a)+

119 Martingale A.S. Convergence Theorem

If Xn is a submartingale and supnEX
+
n <∞ then Xn converges a.s. to some X with E|X| <∞.

4.3 Examples

120 Bounded Increments Example

Xn martingale and |Xn+1 −Xn| ≤M <∞ for all n (i.e. has bounded increments) then if

C = {lim
n
Xn = C <∞} D = {lim sup

n
Xn =∞ and lim inf

n
Xn = −∞}

then P (C ∪D) = 1.
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121 Doob’s Decomposition

Xn a submartingale, then Xn = Mn+An uniquely where Mn is a martingale and An is an increasing
predictable sequence.

Construction: A0 = 0 and An − An − 1 = E(Xn|Fn−1)−Xn−1 ∈ Fn−1 and then Mn = Xn − An and
check this is martingale.

122 Polya’s Urn

An urn has r red balls, and g green balls. Each time, pick a ball and add c balls of chosen color.

Let Xn be the fraction of green balls after n draws and Fn is the information after n draws. Then Xn

is martingale (because Xn+1 independent of Fn and has EXn+1 = Xn by direct computation.

4.4 Doob’s Inequality, Convergence in Lp, p > 1

123 Inequality for expected values of XN

If Xn is submartingale, N is a stopping time which is “bounded” meaning P (N ≥ k) = 1 for some k,
then

EX0 ≤ EXN ≤ EXk

Pf Idea: EX0 = EXN∧0 ≤ EXN∧k = EXN

Then take Kn = 1N<n predictable, so (K ·X)n is submartingale and

(K ·X)k = EXk − EXN∧k = EXk − EXN ≥ E(K ·X)0 = 0.

Common application is N ∧ n which is bounded by n.

124 Doob’s Inequality

Xn submartingale, λ > 0,

λP

(
max

0≤m≤n
Xm ≥ λ

)
≤ EX+

n

Pf Idea: Take N = inf{Xm ≥ λ or m = n}. Then XN ≥ λ if some Xm ≥ λ, and P (N ≤ n) = 1 so

λP
(

max
m

Xm ≥ λ
)
≤ EXN1maxmXm≥λ ≤ EXn1maxmXm≥λ

and EXn1A ≤ EXn ≤ EX+
n always.

125 Lp maximal inequality

Idea: (X+
m)p for 0 ≤ m ≤ n can be bounded in expectation above by E(X+

n )p scaled by a constant
depending only on p

Theorem: Xn submartingale and 1 < p <∞,

E

(
max

0≤m≤n
(X+

m)p
)
≤
(

p
p−1

)p
E(X+

n )p

Pf Idea: Take bounded version of variable, Xn ∧M which either matches Xn ≥ λ or trivially fails.

Express expectations in terms of integrals, apply Doob’s Inequality and then perform some integral
manipulations (Fubini’s and regular integration) then apply Holder’s Inequality.

126 Lp convergence

Theorem Xn martingale, with supE|Xn|p <∞ for p > 1, then Xn → X a.s. and in Lp.

Proof. Apply normal convergence to get a.s. to X. Then bound |Xn −X|p by sup |Xn|p using this
a.s. conv, which is in Lp by the Lp maximal inequality.
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4.6 Uniform Integrability, Convergence in L1

127 Uniform integrable

A collection Xn is uniformly integrable if

lim
M→∞

(
sup
n
E (|Xi|; |Xi| > M)

)
= 0

128 pre-L1 convergence theorem

If Xn s.t. Xn → X in P and E|Xn| <∞ for all n then TFAE

1. Xn are U.I.

2. Xn → X converge in L1

3. E|Xn| → E|X| <∞

129 L1 convergence theorem

If Xn is a submartingale, TFAE:

1. Xn are U.I.

2. Xn converge in L1 and a.s.

3. Xn converge in L1

4.7 Backwards Martingales

130 Backwards martingale

Backwards Martingales: X−n indexed by n = 1, 2, 3, . . . and adapted to the filtration F−n, (i.e.
· · · ⊆ F−2 ⊆ F−1 ⊆ F0) such that E(X−n+1 | F−n) = X−n (i.e. E(X0 | F−1) = X−1)

131 Convergence Theorem for Backwards Martingales

Backwards Convergence Theorem If Xn is a backwards martingale, it converges a.s. and in L1.

4.8 Optional Stopping Theorems

132 Optional Stopping

EX0 ≤ EXN ≤ EX∞
133 Exampes of Optional Stopping Theorems

1. Whenever usual integral convergence theorems hold for EXN∧n.

2. If N is bounded a.s., that is P (N ≤ k) = 1 for some k. Then EX0 ≤ EXN ≤ EXk.

3. Xn U.I. then EX0 ≤ EXN ≤ EX∞.

4. E(|Xn+1 −Xn|Fn) ≤ B <∞ a.s. and EN <∞

134 Wald’s Identity

Thm If X1, X2, . . . are i.i.d. with EXi = 0 and Sn = X1 + · · · + Xn and N is a stopping time with
EN <∞ then ESN = µEN .
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Chapter 5 - Markov Chains

5.1 Examples

135 Markov Chain

a memoryless stochastic process. That is a sequence of random variables Xn such that P (Xn ∈ A |
X1, . . . , Xn−1) = P (Xn ∈ A | Xn−1).

136 transition probability

p(x, y) = P (X1 = y | X0 = x)

pn(x, y) = P (Xn = y | X0 = x)

p(x,A) = P (X1 ∈ A | X0 = x)

5.2 Construction, Markov Properties

137 Markov Property

Let Fn = σ(X1, . . . , Xn), then P (Xn ∈ A | Fn−1) = P (Xn ∈ A | Xn−1) for all n.

138 Strong Markov Property

Let N be a stopping time and define FN = {A : A ∩ {N = n} ∈ σ(X1, . . . , Xn)}, then P (XN ∈ A |
FN−1) = P (XN ∈ A | XN−1).

5.3 Recurrence and Transience

139 ρxy, T
k
y

T ky is the time for the kth return y (not including X0). Ty = T 1
y is for the first visit to y.

ρxy = Px(Ty <∞).

140 recurrence

x is recurrent if ρxx = 1 (that is starting at x a.s. returns to x in finite time.)

141 transience

x is transient if it is not recurrent, that is ρxx < 1.

142 closed

a collection of states is closed if you can never ever escape! that is if x ∈ C and ρxy > 0 then y ∈ C
too.

143 irreducible

A collection of states is irreducible if all states are connected, that is x, y ∈ C implies ρxy > 0 for all
pairs.

5.5 Stationary Measures

144 stationary measure

A stationary measure µ satisfies µ(y) =
∑

x µ(x)p(x, y).

This also implies for any n, µ(y) =
∑

x µ(x)pn(x, y).
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145 reversible measure

A measure is reversible if it satisfies the detailed balance condition µ(y)p(y, x) = µ(x)p(x, y).

146 stationary distribution

A stationary distribution is a probability measure that is stationary, so satisfies µ(y) =
∑

x µ(x)p(x, y)
and

∑
y µ(y) = 1.

147 positive recurrent and null recurrent

x is positive recurrent if ExTx <∞, if x is recurrent but not positive recurrent it is null recurrent.

148 Thm for Existence for Stationary Distribution

If p is irreducible then TFAE

• these exists one positive recurrent state

• all states are positive recurrent state

• there exists a (unique!) stationary measure

5.6 Asymptotic Behavior

149 period for a markov chain

Let Ix = {n : pn(x, x) > 0}, then dx = gcd(Ix) is the period of x. These are unique on irreducible sets
of states.

150 aperiodic

When the period for any state (all states when irreducible) is 1.

151 Convergence Theorem for Markov Chains

If p is irreducible and aperiodic with a stationary measure π, then pn → π as n→∞.
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Probability Theory Quals Questions (– best questions –)

Chapter 1 - Measure Theory

1.1 Probability Spaces

1 Show that Rd, the Borel sets on Rd, is countably generated

countably generated: there exists a countable collection C such that the σ-field can be expressed as
σ(C)
Let SQd be the empty set and all sets of the form

(a1, b1]× (a2, b2]× · · · × (ad, bd]

for −∞ ≤ ai < bi ≤ ∞ and ai, bi ∈ Q ∪ {±∞}
Claim 1: SQd is countable

there are finitely many interval endpoints and countably many options for each, so this set is countable

Claim 2: σ(SQd) = Rd (generates the Borel sets)

First, need to show SQd ⊆ Rd (then σ(SQd) ⊆ σ(Rd) = Rd).
Emptyset is in Rd . Take (a1, b1] × (a2, b2] × · · · × (ad, bd] ∈ SQd. Since σ-fields are closed under
complements and countable union, they are closed under countable intersections.

Take {(a1, b1+1/n)×(a2, b2+1/n)×· · ·×(ad, bd+1/n)}n∈N a countable collection in Rd, the countable
intersection yields the desired set.

Second, need to show that every open set in Rd is in σ(SQd) (then Rd = σ(opens) ⊆ σ(σ(SQd)) =
σ(SQd)), suffices to take basic opens of the form (a1, b1)× · · · (ad, bd) (−∞ ≤ ai < bi ≤ ∞)

Take (a1, b1) × · · · (ad, bd) a basic open in Rd. For each ai, bi there is a sequence of rationals ci,n, di,n
such that ci,n ↓ ai and di,n ↑ bi.
Take the countable collection {(c1,n, d1,n]× · · · × (cd,n, dd,n]}n∈N. Each set in the collection is in SQd

so their countable union is in σ(SQd) and their union gives the basic open we started with.

2 How do σ-fields, semialgebras, and algebras relate? What are examples/non-examples
of each?

SEMIALGEBRAS ) ALGEBRAS ) σ-ALGEBRAS

σ-ALGEBRA =⇒ ALGEBRA:

σ-algebra: closed under complements and countable unions

algebra: (i) closed under complements and (ii) finite unions

(i) complement closure property is the same

(ii) finite unions are countable

ALGEBRA =⇒ SEMIALGEBRA:

algebra: closed under complements and finite unions

semi-algebra: (i) closed under finite intersections and (ii) complements are finite disjoint unions of sets
in the collection

(i) finite unions and complements provides finite intersections

(ii) if complement is in the collection, it also a finite union of disjoint sets (just 1)

Example: Semialgebra not an algebra
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Sd = {∅} ∪ {(a1, b1]× (a2, b2]× · · · × (ad, bd] : −∞ ≤ ai < bi ≤ ∞}
finite intersections contract endpoints (possibly with empty intersection) but preserves (·, ·]
complements - the complement in each dimension will be ∅, (−∞, ai]∪ (bi,∞] which is a finite disjoint
union of sets in that dimension, then taking products over all dimension yields the same overall.

Example: Algebra not an σ-algebra

Ω = Z and A is the collection of integer sets that are finite or co-finite (|A| or |AC | is finite).

closed under complements by construction. Finite unions are also closed, if A,B ∈ A and |A|, |B| <∞
then |A ∪B| <∞, if |AC | <∞ then |(A ∪B)C | = |AC ∩BC | ≤ |AC | <∞ (similarly for |BC | <∞.

However not closed under countably infinite unions, take An = {2n} then ∪nAn = 2Z which is neither
finite nor co-finite.

3 How do ‘measures’ extend from semi-algebras to algebras to σ-algebras?

Given S semi-algebra and a set function µ on S with µ(∅) = 0, we can extend to a measure on the
algebra S by

µ(tiAi) =
∑
i

µ(Ai)

Extending from semi-algebra to σ-algebra:

If µ is a set function on S, a semi-algebra, with µ(∅) = 0 and additive on finite disjoint unions and
sub-additive on infinite unions then µ extends uniquely to σ(S).

4 Let F1 ⊂ F2 ⊂ · · · be σ-algebras, what can we say about ∪iFi?
This is an algebra but not necessarily a σ-algebra

∪iFi is an algebra:

closed under complements - if U ∈ ∪iFi then U ∈ Fi for some i, so UC ∈ Fi ⊆ ∪iFi.
closed under finite intersection/union - given U, V ∈ ∪iFi then U ∈ Fi and V ∈ Fj for some i, j. Let
n = max{i, j} then U, V ∈ Fn and here we have closed finite intersection/union so U ∪ V,U ∩ V ∈
Fn ⊆ ∪iFi
∪iFi may not be a σ-algebra:

What goes wrong: could have a sequence U1 ∈ F1, U2 ∈ F2, . . . , Un ∈ Fn, . . . where the union of Uis is
not contained in any one Fi.
Example (trying to create a union that gives the algebra Z with finite/co-finite sets):

Let Fn be the σ-algebra generated by the singletons {0}, {±1}, . . . , {±n} in Z (so complements are
in Z). The union of all of these gives the desired algebra because a set that is finite is contained in
some interval [−M,M ] in which case it is in FM , so all finite or co-finite sets in Z lie in one of these
σ-algebras.

1.2 Distributions

5 Suppose X and Y are random variables on (Ω,F , P ) and let A ∈ F . If Z(ω) = X(ω) for
ω ∈ A and Z(ω) = Y (ω) for ω /∈ A then Z is a random variable.

Z−1(B) = X−1(B) ∩A ∪ Y −1(B) ∩AC ∈ F
6 Show that a distribution function has at most countably many discontinuities

If a distribution function has a discontinuity at x0 then it is a left discontinuity (F is right continuous)
so F (x0) > F (x0−) = limy↑x0 F (y) and so P (X = x0) = ε0 > 0.
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Since F is a distribution function, limx→∞ F (x) = 1, which importantly is bounded. At the same
time, for each discontinuity jump, we know that F goes up by ε > 0. By the below claim, if there
were uncountably many discontinuities then F would be unbounded in the limit, a contradiction.

Claim: The sum of uncountably many positive terms is unbounded.

Let
∑

α εα be an uncountable sum of positive terms. Define Bn = {εα : ε ≥ 1/n}. If |Bn| is infinite for
any n then the sum is bounded below by

∑
ε∈Bn 1/n which is unbounded. Since there are countably

many Bn, an uncountable number of terms cannot be partitioned into countably many finite chunks,
so the sum must be unbounded.

7 What properties characterize distribution functions?

(i) F is nondecreasing

(ii) limx→∞ F (x) = 1 and limx→−∞ F (x) = 0

(iii) F is right continuous

Theorem Any real function satisfying these is the distribution function of some random variable.
Define Ω = (0, 1) and F the Borel sets, with P Lebesgue measure. For ω ∈ (0, 1),

X(ω) = sup{y : F (y) < ω}

X here is a sort of inverse to F , sometimes denoted F−1.

8 Give an example of a density function whose distribution function has no closed form.

Standard Normal Distribution

Given by the density function f(x) = (2π)−1/2 exp(−x2/2)

has no closed form but has upper and lower bounds.

9 Give an example of a distribution function with dense discontinuities.

Enumerate the rationals by q1, q2, . . . define the indicator functions by 1q = 1[q,∞) (i.e. indicates
whether past a given rational).

Choose αi > 0 such that
∑

i αi = 1 and define

F (x) =

∞∑
i=1

αi1qi

Has dense discontinuities because Q is dense in the reals, but has only countably many discontinuities.

10 Given a random variable with density function f , derive the density function for X2.

FX2(x) = P (X ≤ x) = P (X ∈ [−
√
x,
√
x]) = P (X ≤

√
x)− P (X < −

√
x)

=

∫ √x
−∞

f(y)dy −
∫ −√x
−∞

f(y)dy =

∫ √x
−
√
x
f(y)dy

Differentiating,

fX2(x) = d
dxFX2(x) = d

dx

∫ √x
−
√
x
f(y)dy = f(

√
x)1

2

√
x
−1

+ f(−
√
x)1

2

√
x
−1

= 1
2

√
x
−1

(f(
√
x) + f(−

√
x))
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1.3 Random Variables

11 What is the extended real line? Why do we extend random variables to it?

The extended real line, R∗, is obtained by adding ±∞ to R. These endpoints are also added to all
intervals with no lower/upper bound so [−∞, a) and similar intervals now generate the Borels on R∗.
In cases were we look at inf or sup of random variables, we may end up with a ‘random variable’ that
takes on values of ±∞ which lie outside the usual real line, so we extend to make sense of slightly
more general random variables.

12 If X and Y are two random variables, show that X + Y is one too.

Suppose X,Y : (Ω,F)→ (R,R). Want to show on just the intervals (−∞, a) that

(X + Y )−1((−∞, a)) = {X + Y < a} ∈ F .

Need to split conditions to get separate X < • and Y < • and also enumerate over something
countable.

{X + Y < a} =
⋃
q∈Q
{X < a− q} ∩ {Y < q}

all pieces are in F and combined through countable intersections/unions so this is a measurable set.

13 What is the smallest σ-field that makes all continuous functions Rd → R measurable?

Using the Borels for R the smallest σ-field will be the Borels Rd.
Take the projection map onto the kth coordinate fk : Rd → R. For this to be measurable, f−1

k (a, b)
must be measurable. However

f−1
k (a, b) = Rd−1 × (a, b)

and since this holds for all k and (a, b) and these are all measurable, any σ-field containing them
contains arbitrary intersections to get (a1, b1)× · · · × (ad, bd).

These then generate all opens and all Borels. So any σ-field making all continuous functions measurable
must contain the Borels, and since this is also enough we see that this is the smallest σ-field.

1.4 Integration

14 What are integrable functions? How do we develop integration of them?

First defining integrals for simple functions in the natural way, then extending to bounded functions
by approximating them with simple functions above/below.

Then using bounded functions to approximate non-negative functions. Finally splitting general (inte-
grable) functions into two non-negative pieces and combining in the natural way.

1.5 Properties of the Integral

15 Show that ||f ||p → ||f ||∞ when µ is a probability measure. What if µ is only finite?

Show inequality in both directions.

One side show ||f ||p bounded above by all M defining the inf and so the sequence is bounded.
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On the other side, if there is a gap pick some value N less than ||f ||∞ and take limit to show that
||f ||p > N for some p

The above proof uses the fact that limp→∞ µ(E)1/p → 1, if µ is just finite and not a probability
measure, this will still hold even when µ(E) > 1.

16 State Hölder’s Inequality. What happens when p = 1 and q =∞?

Hölder’s Inequality: If p, q ∈ (1,∞) and 1/p+ 1/q = 1, then for functions f, g,∫
|fg|dµ ≤

(∫
|f |pdµ

)p(∫
|g|qdµ

)q
= ||f ||p||g||q

Extension: This continues to hold when p = 1 and q =∞ where we define

||f ||∞ = inf{M : µ({x : |f(x)| > M}) = 0}

Proof Sketch:

Pick M that defines inf and show inequalities, then take inf

17 When does
∫ ∑

n fndµ =
∑

n

∫
fndµ?

Monotone Convergence: When fn ≥ 0 and fn ↑ f then
∫
fndµ ↑

∫
fdµ

So if gm ≥ 0 and fn =
∑n

m=0 gm then monotone convergence implies
∑

m

∫
gmdµ =

∫ ∑
m gmdµ.

Dominated Convergence: If fn → f (a.e.) and |fn| ≤ g for integrable g, then
∫
fndµ→

∫
fdµ.

So if
∑

n

∫
|fn|dµ < ∞ then F∞ =

∑
n |fn| is integrable (using Monotone convergence as above to

switch sums/integral and by assumption). And Fn =
∑n

i=1 fi satisfies |Fn| ≤ F∞ so
∫
Fn ↑

∑
n

∫
fn =∫ ∑

n fn (first switching finite sums with integrals and then taking the limit)

1.6 Expected Value

18 Let f ≥ 0, how can we approximate f from below with fn simple functions?

fn(x) = min{([2nf(x)]/2n), n}
Splits [k, k+1] into 2n pieces and flattens f in these sections, when f goes above n the function flattens
out to n (this gives finitely many regions for values, hence a simple function) but at n→∞ fn ↑ f .

1.7 Product Measures, Fubini’s Theorem

19 State Fubini’s Theorem. What if instead we know that
∫
X

∫
Y |f(x, y)|dµ2dµ1 < ∞,

what can we conclude?

Fubini’s gives conditions for switching multiple integrals using product spaces

Fubini’s Theorem: Let µ1, µ2 be σ-finite with µ = µ1 × µ2. If f ≥ 0 or
∫
|f |dµ <∞ then∫

X

∫
Y
fdµ2dµ1 =

∫
X×Y

fdµ =

∫
Y

∫
X
fdµ1dµ2

If instead we have
∫
X

∫
Y |f(x, y)|dµ2dµ1 < ∞, then taking F = |f | we have that F ≥ 0, so we can

apply Fubini’s to |f | to get
∫
X×Y |f |dµ =

∫
X

∫
Y |f(x, y)|dµ2dµ1 < ∞. Now that

∫
|f |dµ < ∞ we can

apply Fubini’s to the original function f .
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20 State Fubini’s Theorem. What happens if we drop each of the conditions?

Fubini’s gives conditions for switching multiple integrals using product spaces

Fubini’s Theorem: Let µ1, µ2 be σ-finite with µ = µ1 × µ2. If f ≥ 0 or
∫
|f |dµ <∞ then∫

X

∫
Y
fdµ2dµ1 =

∫
X×Y

fdµ =

∫
Y

∫
X
fdµ1dµ2

Dropped f ≥ 0: If f is not non-negative, then Fubini’s Theorem can fail. Consider the function on
N× N that takes on 1 on the main diagonal and −1 below the main diagonal

...
...

...
...

0 0 0 1 · · ·
0 0 1 −1 · · ·
0 1 −1 0 · · ·
1 −1 0 0 · · ·


then summing with respect to the counting measure row first gives 0 and columns first gives 1 so the
conclusion fails.

Dropped
∫
|f |dµ <∞: If f is non-negative and does not meet this condition, then f is not actually

integrable in the product measure µ, hence the proof for for Fubini’s Theorem falls apart, using the
same example above where the

∫
|f |dµ diverges to ∞ also.

Dropped µi is σ-finite: Take X = Y = (0, 1) but µ1 is Lebesgue (Borel sets) and µ2 is counting
measure (all subsets). Then f(x, x) = 1 otherwise f = 0 gives different integrals (point mass at x = y
for counting measure gives a 1 if integrated first, otherwise is measure 0 so integrates to 0).

21 Use Fubini’s Theorem to derive an expression for E|X|.
Rewrite

E|X| =
∫

Ω
|X|dP =

∫
Ω

∫ |X|
0

xdxdP =

∫
Ω

∫ ∞
0

1|X|>xdxdP

Since 1|X|>x ≥ 0, we can apply Fubini’s to switch the order of integration,

E|X| =
∫

Ω

∫ ∞
0

1|X|>xdxdP =

∫ ∞
0

∫
Ω

1|X|>xdPdx =

∫ ∞
0

P (|X| > x)dx

Chapter 2 - Laws of Large Numbers

2.1 Independence

22 State Dynkin’s π-λ Theorem. Why is it significant?

π-λ Theorem: If P is a π-system and L is a λ-system with P ⊆ L then σ(P) ⊂ L.

Supporting Definitions:
π-system - closed under intersection

λ-system - Ω ∈ L, countable unions contained, and set subtraction contained (A ⊆ B ⇒ B ∩AC ∈ L)

Significance: This theorem allows us to lift properties from a generating set (that is a π-system) to
the σ-algebra it generates.
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Example: Independence
Since independence can often be formulated as independence of σ-algebras, this allows us to check
only a π-system that generates instead of the entire σ-algebra.

Example: agreement of measures
If µ1,µ2 agree on a π-system they also agree on the σ-field generated by it (L = {A : µ1(A) = µ2(A)})
23 Give an example of four random variables where any three are independent but all

four are not.

Let X1, X2, X3, X4 be independent random variables in {−1, 1} with P (Xi = ±1) = 1/2 for all i.

Let Y1 = X1X2, Y2 = X3X4, Y3 = X1X3, and Y4 = X2X4

P (Yi = n) = 1/2 for all i and n = ±1.

three Yis are independent

If we specify 3 Yi’s we can write out 3 Xis in terms of a single one, so the probability is 1/8 (two
outcomes for independent with odds of 1/16 for alignment each) which satisfies independence.

four Yis are not independent

However Y1Y2 = Y3Y4 so Y1 = Y2 = 1 and Y3 = 1 but Y4 = −1 can never happen, so it has probability
0 but the product of independent probabilities is 1/16.

24 If two collections of sets are independent, are their generated σ-fields also indepen-
dent? When can we ensure that they are?

Not true for all collections of sets.

Take Ω = {1, 2, 3, 4} and P ({n}) = 1/4 for all n ∈ Ω.

A1 = {{1, 2}, {1, 3}} and A2 = {{1, 4}}
These are independent as collections of sets

P ({1, x} ∩ {1, 4}) = P ({1}) = 1/4 = (1/2)(1/2) = P ({1, x})P ({1, 4})

But {1, 2, 3} ∈ σ(A1) and

P ({1, 2, 3} ∩ {1, 4}) = P ({1}) = 1/4 6= (3/4)(1/2) = P ({1, 2, 3})P ({1, 4})

so their σ-algebras are not independent.

If we restrict to the condition that the collections be π-systems, that is closed under intersection, then
independence is preserved. (here A1 is not a π-system)

25 Show that the sum of two independent Poisson distributions is again Poisson.

Well Poisson means P (X = k) = e−λλk/k! and P (Y = k) = e−µµk/k! when k = 0, 1, 2, . . .

P (X + Y = n) =
∑
m

P (X = m)P (Y = n−m) =
∑

0≤m≤n

e−λλm

m!
e−µµn−m

(n−m)!

= e−(λ+µ) 1
n!

n∑
m=0

n!
m!(n−m)!λ

mµn−m = e−(λ+µ)(λ+ µ)n/n!

which is a Poisson distribution with parameter λ+ µ.

26 Given distribution functions F1, . . . , Fn, how can you construct independent random
variables with these distribution functions?

Since these are distribution functions, construct a measure µi((a, b]) = Fi(b)−Fi(a) on R. And extend
this to the product P = µ1 × µn.
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Then take Xi to be projection from Rn onto R by the ith coordinate. Then

P (Xi ≤ x) = µi((−∞, x])
∏
i 6=j

µj(R) = Fi(x)

and independence follows by choice of P .

2.2 Weak Laws of Large Numbers

27 State different types of convergences, how do they compare? Give distinguishing
examples for each.

converges almost surely (almost everywhere): µ({x : fn(x) 6= f(x)})→ 0

converges in Lp: E|fn − f |p → 0

converges in probability for all ε > 0, P ({x : |fn(x)− f(x)| > ε})→ 0 (equivalent to ≥ ε)
convergences almost surely (almost everywhere) =⇒ convergence in probability

Lp convergence =⇒ convergence in probability

Example Ideas:

• for Lp not converging, get smaller intervals but weight higher and higher

• for a.e. not converging, make sure to shift intervals around to always return to the points again

Example: convergences in probability and Lp but not a.e.
Take shifting and shrinking subsets of [0, 1] (e.g. [0, 1], [0, 1/2], [1/2, 1], [0, 1/4], [1/4, 1/2], etc) and let
fn = 1An . Then the regions where fn and 0 differs shrinks in measure to 0 so fn → 0 in measure, but
not a.e. because each point in [0, 1] differs from 0 for arbitrarily high n.

Converges in Lp because E|fn|p = E1An = 1/2n → 0 for all p.

Example: convergences in probability but not in Lp

Take the above example but weight each fn by µ(An)−1 so that E|fn|p = Eµ(An)−p1An = µ(An)1−p

which does not converge to 0 as n→∞ (µ(An)→ 0) for any p ≥ 1

Example: convergences a.e. but not in Lp

fn = n1[0,1/n] converges a.e. to 0 but not in Lp because E|fn|p =
∫
np1[0,1/n] = np−1

which does not go to 0 when p ≥ 1

Example: Not converging in all 3
fn = (−1)n on [0, 1]. Then for any function f , if P ({x : |fn − f | > 1/2}) → 0 then it must be below
1 at some point, so for N even, f ∈ [1/2, 3/2] but then for fN+1 |fN+1 − f | ≥ 1/2 on then entire
interval, so no convergence. Can’t converge in Lp or a.s. since those imply in probability.

28 What is the Weak Law of Large Numbers? Sketch a proof. What if we don’t have
finite variance?

Weak Law of Large Numbers: Let X1, X2, . . . be i.i.d with finite variance (can weaken to E|Xi| <
∞). Let Sn = X1 +X2 + · · ·+Xn and µ = EX1. Then Sn/n→ µ converges in probability.

Proof: (assuming finite variance)
Let var(Xi) = σ2, then because i.i.d., var(Sn/n) = 1

n2 var(Sn) = 1
nσ

2. (and E(Sn) = nµ)

Chebyshev’s Inequality:

ϕ(X) = X2 = |X|2 and A = {x : |SN/n− µ| > ε} = {x : |SN/n− µ|2 > ε2}.

inf
A
ϕ(Sn/n− µ) · P (A) ≤ Eϕ(Sn/n− µ) = E(Sn/n− µ)2 = var(Sn/n) = σ2/n
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so then
P (A) = P ({x : |SN/n− µ| > ε}) ≤ σ2/nε2 → 0 as n→∞

so Sn/n→ µ in probability.

Extension without finite variance
Can get the same result assuming only E|Xi| <∞ (instead of EX2

i <∞), the proof uses truncation
and version of the weak law for triangular arrays.

2.3 Borel-Cantelli Lemmas

29 What are the Borel-Cantelli Lemmas? How do they relate?

Borel-Cantelli Lemma: If
∑∞

n=1 P (An) <∞ then

P ({x : x ∈ An infinitely often}) = P (lim sup
n→∞

An) = P ( lim
n→∞

∪∞m=nAm) = P (An infinitely often) = 0

Second Borel-Cantelli Lemma: If An are independent and
∑
P (An) =∞ then

P ({x : x ∈ An infinitely often}) = P (lim sup
n→∞

An) = P ( lim
n→∞

∪∞m=nAm) = P (An infinitely often) = 1

The second Borel-Cantelli Lemma is a partial converse (¬p+ r =⇒ ¬q) assuming also independence.

30 What is the second Borel-Cantelli Lemma? What happens if we remove the inde-
pendence condition?

Second Borel-Cantelli Lemma: If An are independent and
∑
P (An) =∞ then

P ({x : x ∈ An infinitely often}) = P (lim sup
n→∞

An) = P ( lim
n→∞

∪∞m=nAm) = P (An infinitely often) = 1

Fails if not Independent: An = (0, 1/n) so an → 0 then lim supnAn = ∅ but
∑
P (An) =

∑
an =∑

1/n =∞. These events are not independent because P (An ∩Am) = P (Am) 6= P (An)P (Am) where
m > n.

31 Assume Xk → X in probability and g is a continuous function. Is it true that
g(Xk)→ g(X)?

Yes, in probability at least.

Xk → X in probability is equivalent to every subsequence has a subsequence that converges a.s.,
so g(Xmk) → g(X). This means that this holds for g(Xn) on these subsequences. Then using the
equivalence again we have g(Xn)→ g(X) in probability.

What about g(Xn) → g(X) a.s.? Well not always, for example if g(y) = y then if Xk does not
converge a.s. then g(Xn) = Xn does not converge a.s. either.

32 Use the Borel-Cantelli Lemmas to construct a sequence of random variables that
converges in probability but not almost surely.

Try indicator functions converging to 0, so take supports An with measure 1/n. Could take these
rotating across interval (0, 1).

To apply Borel-Cantelli, we want these to be independent to have P (Ani.o.) = 1. How to construct
An with measure 1/n and independent?

Records! Take X1, X2, . . . i.i.d. and let An be the collection where Xn is larger than X1, . . . , Xn−1.
These have measure 1/n and are independent. Intuitively, because Xn needs to be larger than all pre-
ceding ones, regardless of the order of the preceding Xi, so Ak independent from An. More rigorously,
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take an ordering, this defines a permutation, by symmetry these are uniformly distributed, so all are
equally likely.

2.4 Strong Law of Large Numbers

33 State the Strong Law of Large Numbers. Sketch a proof (you may assume EX4
i <∞).

Can we weaken the assumptions? What happens if E|Xi| =∞?

SLLN: Let X1, X2, . . . be i.i.d. with EXi = µ and EX4
i <∞. Then

Sn
n

=
X1 + · · ·Xn

n

a.s.−−→ µ

Proof (with finite 4th moment)

1. Assume µ = 0 and bound ES4
n by n2

2. Use Chebyshev’s to bound P (|Sn| > nε)

3. Apply Borel-Cantelli to get P (|Sn| > nε i.o.) = 0, meaning that Sn/n→ µ

Extensions/Generalizations:

1. Can weaken EX4
i <∞ to just E|Xi| <∞.

2. Can also weaken i.i.d. to pairwise independent and identically distributed.

3. Can actually extend to anywhere EXi exists, that is when EX+
i =∞ and EX−i <∞ and i.i.d. (so

EXi =∞) the result holds too.

Proof Ideas: Truncate Xi by Yi = Xi1|Xi|≤i and show the result for the Yi’s. Do more clever bounding
of the variances and then apply Chebyshev to bound difference from mean in terms of that variance.

What if E|Xi| =∞?
SLLN fails in this case and the Sn/n does not converge to a finite value a.e.

∞ = E|Xi| =
∫ ∞

0
P (|X1| > x)dx ≤

∞∑
0

P (|X1| > n)

so Second Borel Cantelli =⇒ P (|Xn| > n i.o.) = 1

take C = {ω : limSn/n exists} and intersect with |Xn| > n i.o. to show that P (C) = 0.

34 Let X1, X2, . . . be i.i.d and non-negative with EXi =∞. What can we say about Sn/n?

Well the strong law of large numbers also holds here, so Sn/n→∞ a.s.

Can you prove it?

The method uses truncation, so let B be some bound and define Yn = Xn1|X|<B.

Then Tn = Y1 + · · ·Yn, and because Yn ≤ Xn, Tn ≤ Sn.

Claim, EYi → EXi = ∞. This follows because Yi are monotonic increasing to Xi so monotone
convergence theorem applies.

Then strong law of large numbers holds for Yn and Tn/n approaches the expected value, EYn, a.s. but
as M → ∞ that expected value goes to ∞ so we have a lower bound for Sn/n that grows to ∞ a.s.
hence Sn/n→∞ a.s. too.
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2.5 Convergence of Random Series

35 Consider a sequence of i.i.d variables X1, X2, . . .. How can we express Xn → 0 a.s. in
terms of a convergence of something in probability?

Let Mn = supi>n |Xi|. Then Mn → 0 in probability if and only if Xn → 0 a.s.

Proof

⇒ If Mn → 0 in probability, then for all ε > 0 we have P (Mn > ε) = P (supi>n |Xi| > ε)→ 0

Take ω such that limn→∞Xn(ω) 6= 0, then there exists some ε > 0 such that infinitely often, |Xn(ω)| >
ε, hence Mn(ω) > ω for all n.

Then P (limn→∞Xn 6= 0) ≤ P (Mn > ε)→ 0 so Xn → 0 a.s.

⇐ If Xn → 0 a.s. then a.e. Xn → 0 as a sequence, so ∀ε > 0 there exists N such that ∀n ≥ N
|Xn| < ε and so MN = supn>N |Xn| < ε. So P (Mn < ε)→ 1 and conversely P (Mn > ε)→ 0.

36 What is Kolmogorov’s 0-1 Law. What is the definition of a tail σ-algebra? What
about tail random variables?

Given random variables X1, X2, . . . define Fn = σ(Xn, Xn+1, . . .) and the tail σ field is ∩nFn. In
words, it is events that depend only on the tail of the Xi’s, so changing a finite number will not affect
the tail.

Kolmogorov’s 0-1 Law If X1, X2, . . . are independent and T is their tail σ field, then for any A ∈ T ,
P (A) ∈ {0, 1}.
The key idea of the proof is to show that A is independent from itself, so that P (A) = P (∩A) =
P (A)n → 0, 1.

A tail random variable would be one that is measurable with respect to the tail field. In this case,
P (Z ∈ B) = 0, 1 for all B, so it must be the case that Z is actually constant.

37 State Kolmogorov’s Maximal Inequality. How does it compare to Chebyshev’s In-
equality?

Kolmogorov’s Maximal Inequality Let X1, X2, . . . be independent with EXi = 0 and var(Xi) <∞
then

P

(
max

0≤m≤n
|Sm| ≥ x

)
≤ x−2 var(Sn)

In this setting, Chebyshev’s Inequality only says that P (|Sn| ≥ x) ≤ x−2 var(Sn) but makes no claims
about the partial sums along the way.

Chapter 3 - Central Limit Theorems

3.1 The De Moivre-Laplace Theorem

38 Give a concrete example of the Central Limit Theorem. How could you prove this
directly?

The De Moivre-Laplace Theorem.

X1, X2, . . . i.i.d with P (Xi = 1) = P (Xi = −1) = 1/2 and Sn = X1 + · · ·Xn (e.g. betting $1 on a coin
flip, Sn =winnings after n tosses)

P (Sn/
√
n ≤ b)→

∫ b

−∞
(2π)−1/2e−x

2/2dx
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So th distribution functions for Sn/
√
n converge to the distribution function for χ with normal distri-

bution. So Sn/
√
n converges weakly to χ.

Direct Proof Sketch.

Express P (S2n = 2k) in terms of factorials, then use Stirling’s Formula to rewrite these. Careful choice
of k with growth in terms of n, allows us to determine the asymptotic behavior which we show gives
the integral desired.

3.2 Weak Convergence

39 What is weak convergence? How does it relate to convergence in probability and
a.s. convergence?

Weak and a.s. Convergence

Xn ⇒ X∞ if and only if there exists Yi
d
= Xi for i ∈ N ∪ {∞} such that Yn → Y∞ a.s.

Pf Sketch: Take Fn ⇒ F∞ dist from X and construct random variables directly from them Yn(x) =
sup{y : Fn(y) < x}. Then show that, except at countable places, Yn(x)→ Y∞(x) so Yn → Y∞ a.s.

Weak and Convergence in P

Xn → X∞ in P implies Xn ⇒ X∞

Pf Sketch: (slightly tricky!)
Step 1: show F (a− ε) ≤ limn Fn(a) ≤ F (a+ ε)

Express FX(a) ≤ FY (a+ ε) + P (|X − Y | ≥ ε) and apply twice to Fn(a) and F (a− ε)
Step 2: For continuity point a, take ε→ 0 so then limn Fn(a)→ F (a).

Xn ⇒ C for a constant C, then Xn → C in probability

Pf Sketch: Find FC(x) = 1 when x ≥ c and FC(x) = 0 when x < C (so continuous outside x = C).
Since Fn(x)→ FC(x),

P (|Xn − C| ≥ ε) = Fn(C − ε) + 1− Fn(C + ε)→ FC(C − ε) + 1− FC(C + ε) = 0 + 1− 1 = 0

40 What is an example of a r.v. that converges weakly but not in probability?

Take Xn : (0, 1)→ (0, 1) defined by Xn(w) =

{
w n = 2m

1− w n = 2m+ 1

Then Fn(x) = x for all n, and so Xn ⇒ X1 however Xn 6→ Y for any Y because on (0, 1/3),
X2m ∈ (0, 1/3) but X2m+1 ∈ (2/3, 1) and so for any r.v. Y , |Xn − Y | > 1/6 infinitely often, so
lim inf P (|Xn − Y | ≥ ε) ≥ 1/6 and so does not converge to 0.

41 Why do we only get convergence at continuity points for weak convergence?

Take Xn = X + 1/n then Fn(y) = F (y − 1/n) so only converges to F (y) if F is left continuous (i.e.
continuous) at y.

3.3 Characteristic Functions

42 What is the significance of the inversion formula for characteristic functions?

The inversion formula takes a characteristic function and produces the distribution function of the
corresponding random variable. It’s importance is that there is a 1-1 mapping between ϕ(t) and F (y).
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43 Give an example where the characteristic functions ϕn of Xn converges to ϕ(t) dis-
continuous at t = 0. What is the limit of the distribution function of the Xn?

ϕn(t) = e−nt
2/2. Then ϕn converge to ϕ(t) =

{
0 t 6= 0

1 t = 0
which is discontinuous at t = 0.

The distribution function limit F (y) =
∫ x
−∞

1√
2πn

e−y
2/2n → 1/2 for all x but hard to show.

44 Suppose you have X1, X2, . . . and corresponding characteristic functions ϕ1, ϕ2, . . . con-
verging point-wise to ϕ(t). What can you say? What is tightness? How do continuity
and tightness relate?

Initially, only that ϕ(0) = 1 since all the ϕn are char. fun.

If ϕ is continuous at 0 (for example ϕ is char fun for some Y ), then the ϕn are tight, and ϕ is a
characteristic function for some X.

This is because the decay of the measure (captured by tightness condition) is related to the behavior
of ϕ at 0, specifically bounded by an integral that gets arbitrarily small if ϕ is continuous.

3.4 Central Limit Theorems

45 State the i.i.d. central limit theorem. Prove it (possibly with added assumptions)

Central Limit Theorem X1, X2, . . . i.i.d. R.V.s with EXi = µ and var(Xi) = σ2 ∈ (0,∞) then

Sn − nµ
σ
√
n
⇒ χ = N (0, 1)

Proof. Use characteristic functions. Assume µ = 0 and let Xi have characteristic function ϕ(t). Then
Sn has characteristic function ϕ(t)n and dividing by σ

√
n gives ϕ( t

σ
√
n

)n.

Using a Taylor series approximation, ϕ(t) = EeitX = 1 + itEX − t2EX2

2 + o(t2) = 1− t2σ2

2 + o(t2). So
then

ϕSn/σ
√
n(t) =

(
1− t2σ2

2nσ2 + o( t
2

n )
)n

=
(

1− t2

2n + o( t
2

n )
)n
→ (1 + −t2/2

n )n → e−t
2/2 = ϕχ(t).

46 The type of convergence in the Central Limit Theorem is the convergence in distri-
bution. Why isn’t the convergence almost sure?

Claim: Sn√
n

cannot converge in probability (and thus not almost surely).

Suppose that it did, then
∣∣∣ S2n√

2n
− Sn√

n

∣∣∣→ 0 in probability. Let Yn = S2n√
2n
− Sn√

n
.

Then Yn → 0 in probability, but can split up Yn as

Yn =
S2n√

2n
− Sn√

n
=
S2n − Sn√

2n
+
Sn√
n

(
1√
2
− 1)

and since Sn√
n
⇒ σχ, both pieces are independent and converge to a normal distribution with finite

nonzero variance, so Yn ⇒ Cχ for some C 6= 0. This contradicts Yn → 0 in P (which implies Yn ⇒ 0).

47 Suppose X1, X2, . . . are bounded but
∑

n var(Xn) = ∞, what can you say about the
limiting behavior of Sn?

Up to suitable scaling this will still converge to χ = N (0, 1).

Lindeberg-Feller CLT:
Triangular array Xn,m independent variables for 1 ≤ m ≤ n where EXn,m = 0 and
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(i)
∑n

m=1EX
2
n,m → σ2 > 0 as n→∞

(ii) ∀ε > 0
∑n

m=1E(|Xn,m|2; |Xn,m| > ε)→ 0 as n→∞

Sn = Xn,1 + · · ·+Xn,n ⇒ σχ

So center the Xi’s so that they have mean 0. Then we want to scale by something so that
∑n

m=1EX
2
n,m

converges to a positive finite value. If Xn,m = Xm/cn then this sum will be 1
c2n

∑n
m=1 var(Xi) so letting

cn =
√

var(Sn) this is exactly 1 for all n.

Now for (ii), since the Xm are bounded, and the denominator goes to ∞, at some point |Xn,m < ε so
the sum is 0.

Applying L-F CLT,

Xn,1 + · · ·+Xn,m =
Sn
cn

=
Sn√

var(Sn)
⇒ χ

and if we add back in the means, we have Sn−ESn√
var(Sn)

⇒ χ.

48 What is the Lindeberg-Feller Central Limit Theorem? How does it relate to the
i.i.d. Central Limit Theorem?

Lindeberg-Feller CLT:
Triangular array Xn,m independent variables for 1 ≤ m ≤ n where EXn,m = 0 and

(i)
∑n

m=1EX
2
n,m → σ2 > 0 as n→∞

(ii) ∀ε > 0
∑n

m=1E(|Xn,m|2; |Xn,m| > ε)→ 0 as n→∞

Sn = Xn,1 + · · ·+Xn,n ⇒ σχ

This is a generalization of the i.i.d. CLT, because we can take Xn,m = Xm√
n

then Xn,1 + · · ·+Xn,n =
Sn√
n
⇒ χ.

Condition (i) follows directly from computation, and (ii) converges to zero by dominated convergence
theorem and the fact that P (|Xm| > ε

√
n) → 0 by applying Chebyshev’s Inequality and using the

finite variance of Xm.

3.6 Poisson Convergence

49 What is Poisson Convergence and why is it called the “law of rare events”?

Poisson Convergence (or Poisson Limit Theorem) gives an analogous limit theorem to CLT but for a
triangular array of Bernoulli variables with a Poisson distribution as the limiting behavior.

This is called the law of rare events because the probability of the events (Xn,m = 1) must get small
as n grows, so the sum is counting the number of rare occurrences.

3.10 Limit Theorems in Rd

50 State and prove the Central Limit Theorem. Can you state a version of the Central
Limit Theorem for random vectors?

Central Limit Theorem X1, X2, . . . i.i.d. R.V.s with EXi = µ and var(Xi) = σ2 ∈ (0,∞) then

Sn − nµ
σ
√
n
⇒ χ = N (0, 1)
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Proof. Use characteristic functions. Assume µ = 0 and let Xi have characteristic function ϕ(t). Then
Sn has characteristic function ϕ(t)n and dividing by σ

√
n gives ϕ( t

σ
√
n

)n.

Using a Taylor series approximation, ϕ(t) = EeitX = 1 + itEX − t2EX2

2 + o(t2) = 1− t2σ2

2 + o(t2). So
then

ϕSn/σ
√
n(t) =

(
1− t2σ2

2nσ2 + o( t
2

n )
)n

=
(

1− t2

2n + o( t
2

n )
)n
→ (1 + −t2/2

n )n → e−t
2/2 = ϕχ(t).

Central Limit Theorem in Rd X1, X2, . . . i.i.d random vectors with EXi = µ ∈ Rd with finite
covariance Γi,j = E(Xi − µi)(Xj − µj),

Sn − nµ√
n

⇒ Nd(0,Γ)

where Nd(0,Γ) is the multivariate Gaussian with mean 0 and covariance Γ.

Chapter 4 - Martingales

4.1 Conditional Expectation

51 What are regular condition probabilities? Why are they useful?

A regular conditional distribution of X with respect to F where X : (Ω,F) → (S,S) is a function
µ : Ω× S → [0, 1] such that

i. Fixing ω ∈ Ω, A ∈ S 7→ µ(ω,A) is a probability measure on S

ii. Fixing A ∈ §, ω ∈ Ω 7→ µ(ω,A) is a version for E(X ∈ A | F).

If X is the identity on Ω then µ(ω,A) is a version for E(1A | F) = P (A | F) and µ is a regular
conditional probability.

These are useful because they give a way of computing conditional expectations on f(X), via E(f(X) |
F) =

∫
f(x)µ(ω, dx).

4.2 Martingales, Almost Sure Convergence

52 What are some examples of martingales? Submartingales?

symmetric random walk on Z is martingale, if non-symmetric could be sub/super martingale.

Betting on a fair casino game ... earnings at time n is martingale. Unfair game gives a supermartingale.

53 What is the upcrossing inequality? Why is it useful? How is it proved?

Upcrossing Inequality If Xn is submartingale, a < b, and Un denotes the number of complete
upcrossings (going from Xn ≤ a to xn ≥ b) by time n, then

(b− a)EUn ≤ E(Xn − a)+ − E(X0 − a)+.

Proof. First we switch to Yn = (Xn − a)+ so that we do not incur losses from incomplete upcrossings
but maintain all the upcrossing behavior of Xn. Define the predictable sequence (betting strategy) Hn

to be 1 when between occurences of Yn ≤ a and the next time Yn ≥ b (i.e. only bets during upcrossing
phases). Then (b− a)Un ≤ (H · Y )n.

43



Now take the complement strategy (1−H)n and since Xn is submartingale, so is Yn and so (1−H ·Y )n
is submartingale too, meaning E(1−H ·Y )n ≥ E(1−h·Y )0 = 0. It also satisfies (1−H ·Y )n+(H ·Y )n =
Yn − Y0.

(b− a)EUn ≤ E(H · Y )n ≤ E(H · Y )n + E(1−H · Y )n = E(Yn − Y0) = E(Xn − a)+ − E(X0 − a)+.

Application: The upcrossing inequality is primarily useful in proving the Martingale A.S. convergence
theorem.

54 Give the definition of martingales and state the a.s. convergence theorem for them.
How can you prove this convergence theorem?

Martingale A sequence of random variables Xn adapted to a filtration Fn such that E|Xn| <∞ for
all n and E(Xn+1 | Fn) = Xn for all n ≥ 0.

If E(Xn+1 | Fn) ≥ Xn then Xn is submartingale. If E(Xn+1 | Fn) ≤ Xn then Xn is supermartingale.

A.S. Convergence Theorem
If Xn is submartingale and supnEX

+
n <∞ then Xn → X a.s. and E|X| <∞.

Proof. First, we use apply the upcrossing inequality, noting that E(Xn − a)+ ≤ EX+
n + |a|, so then

(b− a)EUn ≤ E(Xn − a)+ − E(X0 − a)+ ≤ EX+
n + |a| ≤ sup

n
EX+

n + |a| <∞

so we see that EUn < ∞ for all a < b. As n → ∞, EUn ↑ EU so by monotone convergence we have
that EU <∞ also. This means that U <∞ a.s..

On the set where U < ∞ we will show that limnXn exists. Suppose that lim infnXn < lim supnXn

then choose a < b between them. Since lim infnXn < a < b < lim supnXn there would be infinitely
many upcrossings to maintain support for lim inf, lim sup so U 6< ∞ but this happens on a measure
zero set, so lim infnXn = lim supnXn = limnXn a.s. and let X = limnXn.

Now to conclude that E|X| <∞ we apply Fatou’s lemma to each piece, namely E|X| = EX+ +EX−.
By Fatou’s, lim infnEX

+
n ≥ EX+ and

lim inf
n

EX+
n < sup

n
EX+

n <∞

so EX+ <∞. Now for the negation, X−n = X+
n −Xn, and applying Fatou’s

EX− ≤ lim inf
n

EX−n ≤ lim inf
n

EX+
n < sup

n
EX+

n <∞.

55 Can you give an example of a martingale that converges a.s. but not in L1? What
condition can we put on the sequence to prevent this?

Let Sn be a symmetric random walk on Z starting at 1. Let N be the stopping time N = inf{n : Sn =
0}. Define Xn = SN∧n. This will converge a.s. to 0. First, taking −Xn ≤ 0 which is also martingale,
we have supn(−Xn)+ = 0 < ∞ so Xn → X∞ a.s.. If X∞ 6= 0 then taking ε = 1/2, we see that if
|Xn −X∞| < ε then |Xn+1 −X∞| > ε so it does not converge, implying that X∞ = 0.

However E|Xn − 0| = E|SN∧n| = E|SN∧0| = E|S0| = 1 for all n, so convergence does not happen in
L1.

If UI then a.s. convergence gives L1 convergence and vice versa.

56 Let Xn be a martingale with respect to Fn, and suppose E(X2
n) ≤ B < ∞ for all n.

What can you conclude about Xn?

Hint: can we apply a convergence theorem to it?

(EX+
n )2 ≤ E(X+

n )2 ≤ EX2
n ≤ B. So supnEX

+
n ≤

√
B <∞ so we can apply a.s. convergence to Xn.
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57 Let Xn be a submartingale, Hn be a predictable sequence, and N a stopping time.
Show that (H ·X)n and XN∧n are both submartingale as well.

E((H ·X)n | Fn−1) = E

(
n∑

m=1

Hm(Xm −Xm−1) | Fn−1

)
=

n∑
m=1

E (Hm(Xm −Xm−1) | Fn−1)

= E(Hn(Xn −Xn−1) | Fn−1) +

n−1∑
m=1

Hm(Xm −Xm−1)

= HnE(Xn | Fn−1)−HnXn−1 +

n−1∑
m=1

Hm(Xm −Xm−1)

=
n−1∑
m=1

Hm(Xm −Xm−1) = (H ·X)n−1

Now define the predictable sequence Hn = 1N>n. Then (H ·X)n is submartingale, and evaluates to
XN∧n −X0. Adding back X0 gives that XN∧n is submartigale as well.

4.3 Examples

58 Second Borel-Cantelli Lemma Version II

Thm.Fn a filtration (with F0 = {∅,Ω}), and Bn, n ≥ 1 sequence of events with Bn ∈ Fn.

{Bn i.o } =

{ ∞∑
n=1

P (Bn|Fn−1) =∞

}

Pf Sketch: Take Xn =
∑n

m=1 1Bn , then this is submartingale. Apply Doob’s decomposition to get
Xn = Mn + An where the martingale will be bounded. Using bounded increments, consider how the
limit of Xn (sum of indicators) relates to the limit in Mn, in each of the cases given by bounded
increments.

4.4 Doob’s Inequality, Convergence in Lp, p > 1

59 When can we conclude Lp convergence for martingales? How is it proved? Is there
a similar proof for L1?

Lp Convergence Theorem If Xn is submartingale and supnE|Xn|p <∞ (for some p > 1) then Xn

converges a.s. and in Lp to some X.

Proof. First we show a.s. convergence. Observe that (X+
n )p ≤ |Xn|p so supEX+

n ≤ p
√

supnE|Xn|p <
∞ so the a.s. convergence lemma gives that Xn → X a.s. and E|X| <∞.

Now to show that this convergence happens in Lp we need to apply an integral convergence theorem
to E|Xn − X|p since |Xn − X|p → |X − X|p = 0 since Xn → X a.s.. First we apply Lp maximal
inequality to get

E

(
max

0≤m≤n
|Xm|p

)
≤
(

p

p− 1

)p
E|Xn|p

and taking n→∞ we have

E

(
(sup
n
|Xm|)p

)
= E

(
sup
n
|Xm|p

)
≤
(

p

p− 1

)p
sup
n
E|Xn|p <∞.
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Now we can use (supn |Xm|)p to apply dominated convergence since

|Xn −X| ≤ |Xn|+ |X| ≤ sup
n
|Xn|+ lim |Xn| ≤ 2 sup

n
|Xn|

so |Xn−X|p ≤ 2p(supn |Xn|)p and since p is fixed, 2p is a fixed finite constant, making 2p(supn |Xn|)p
integrable by our inequality above. Then dominated convergence applies to E|Xn −X|p → 0 so our
convergence happens in Lp.

L1 convergence There is no similar proof for L1 convergence because there is no L1 maximal in-
equality. Instead L1 convergence is proved using uniform integrability.

60 How does Doob’s Inequality relate to Kolmogorov’s Maximal Inequality?

Doob’s Inequality For Xn submartingale and λ some constant, then

P

(
max

0≤m≤n
X+
n ≥ λ

)
≤ λ−1E(X+

n ).

Kolmogorov’s Inequality Xn independent random variables with EXn = 0 and var(Xi) <∞. Then
Sn = X1 + · · ·+Xn and taking x, satisfies

P

(
max

0≤m≤n
|Sm| ≥ x

)
≤ x−1 var(Sn).

Claim: Doob’s Inequality =⇒ Kolomogorov’s Inequality
Since EXn = 0, Sn from Kolmo. is a submartingale, and since x 7→ x2 is convex and E|S2

n| =∑
var(Xi) < ∞, S2

n is submartingale as well. Applying Doob’s to this with λ = x2 gives the desired
result.

4.6 Uniform Integrability, Convergence in L1

61 Show that if Xn is uniformly integrable and N is a stopping time that XN∧n is also
uniformly integrable.

First we break up E(|XN∧n|; |XN∧n| > M) = E(|XN |; |XN | > M,N ≤ n)+E(|Xn|; |Xn| > M ;n < N).

We will show that E|XN | < ∞ to show that the first piece goes to 0 as M → ∞. For this, we want
to show that Xn u.i. implies XN∧n → XN a.s. by the a.s. convergence theorem which also tells
us that E|XN | < ∞. To see this, choose M >> 0 such that supnE(|Xn|; |Xn| > M) ≤ 1. Then
supE|Xn| ≤M + 1 <∞. Since XN∧n is submartingale, E|XN∧n| ≤ E|Xn| for all n, so

sup
n
EX+

N∧n ≤ sup
n
E|XN∧n| ≤ sup

n
E|Xn| <∞

so a.s. convergence tells us that XN∧n → X a.s.. And since N ∧ n ↑ N as n → ∞, we have that
X = XN , thus E|XN | <∞.

Now the second piece goes to 0 as M → ∞ because Xn is U.I. and the added n < N condition only
shrinks the expectation. Hence the combined sum goes to 0 making XN∧n U.I.

4.7 Backwards Martingales

62 What are backwards martingales? What can you say about their convergence?

Backwards Martingales: X−n indexed by n = 1, 2, 3, . . . and adapted to the filtration F−n, (i.e.
· · · ⊆ F−2 ⊆ F−1 ⊆ F0) such that E(X−n+1 | F−n) = X−n (i.e. E(X0 | F−1) = X−1)
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Given the direction of the filtration, these have nicer convergence theorems.

Backwards Convergence Theorem If Xn is a backwards martingale, it converges a.s. and in L1.

Proof (using U.I. convergence). Xn = E(X0 | F−n) and since E|X0| <∞, this is a UI collection, and
since Xn are submartingale and U.I. they converge a.s. and in L1.

Proof (using A.S. conv). Applying the upcrossing inequality to X−n, . . . , X0 we have (b − a)EUn ≤
E(X0 − a)+ − E(X−n − a)+ ≤ E(X0 − a)+ so this is finite meaning EU < ∞ so U < ∞ a.s. which
just as for submartingales implies that the limit exists a.s..

Now use U.I to lift this to L1 convergence. Define the cut-off function ϕM (x) to be x where x ∈
[−M,M ] but stay at ±M when it goes beyond, then

E|Xn −X| ≤ E|Xn − ϕM (Xn)|+ E|ϕM (Xn)− ϕ(X)|+ E|ϕM (X)−X|

We show each piece goes to 0 as M →∞.

First, E|Xn − ϕM (Xn)| = E(|Xn − ϕM (Xn)|; |Xn| > M) ≤ E(|Xn; |Xn| > M)→ 0 since Xn is U.I.

Second, E|ϕM (Xn)− ϕ(X)| → 0 since Xn → X a.s. and ϕM is a bounded and continuous function.

Third, E|ϕM (X)−X| = E(|X − ϕM (X)|; |X| > M) ≤ E(|X|; |X| > M)→ 0 since E|X| <∞.

63 Use reverse martingales to derive the SLLN. Hint: let F−n = σ(Sn, Xn+1, Xn+2, . . .).

SLLN X1, X2, . . . iid with EXi = µ and E|Xi| <∞. Then Sn/n→ µ a.s.

Let Y−n = Sn
n . First we want to show that this gives a backwards martingale with respect to the

filtration given. Then we show that Y−∞ = µ.

Since Y−n = Sn/n ∈ σ(Sn) ⊆ F−n so it is adapted to F−n. Since E|Xi| < ∞, we have E|Y−n| < ∞.
Finally,

E(Y−n+1 | F−n) = E

(
X1 + · · ·Xn−1

n− 1
| σ(Sn, Xn+1, . . .)

)
With respect to σ(Sn) all the X1, . . . , Xn−1 are interchangeable and have expectation EXi = Sn/n.

So this gives
(n−1)

Sn
n

n−1 = Sn
n = Y−n so Y−n is a backwards martingale.

By the backwards martingale convergence we have Sn
n = Y−n → Y−∞ a.s.. And Y−∞ = E(Y−1 |

F−∞) = E(X1 | ∩nF−n). Since ∩nF−n is the exchangable algebra for X1, . . . Y−∞ is trivial and thus
constant with expectation E(X1) = µ so Sn/n→ µ a.s.

4.8 Optional Stopping Theorems

64 What is optional stopping? What are some conditions under which it holds?

If Xn is a submartingale and N is a stopping time then XN∧n is submartingale so EXN∧0 ≤ EXN∧n for
all n, but this can only be strengthened to EX0 ≤ EXN when optional stopping holds. Rephrasing, we
want to know when EXN∧n → EXN , for example when we could apply integral convergence theorems
to it.

Some cases when this holds:

1. Whenever usual integral convergence theorems hold for EXN∧n.

2. If N is bounded a.s., that is P (N ≤ k) = 1 for some k. Then EX0 ≤ EXN ≤ EXk.

[Pf.] XN∧n submartingale, so EX0 = EXN∧0 ≤ EXN∧k = EXN . Then Kn = 1N>n
predictable, so EXk − EXN = (K ·X)k ≥ 0
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3. Xn U.I. then EX0 ≤ EXN ≤ EX∞.

Xn U.I. =⇒ XN∧n U.I. too. =⇒ XN∧n → XN a.s. and in L1.
EXN − EX0 ≤ E|XN −XN∧n|+ EXN∧n − EX0→ EXN∧n − EX0 ≥ 0

4. E(|Xn+1 −Xn|Fn) ≤ B <∞ a.s. and EN <∞
Show that XN∧n is U.I. by bounding by integrable r.v. in terms of sum of increments.

65 Let ζ1, ζ2, . . ., be i.i.d. with Eζi = µ, N a stopping time with finite expectation. Show
that ESN = µEN .

Here is an example where we can get optional stopping by appealing to traditional methods.

Let Xn = SN∧n − µ(N ∧ n). Since this is martingale, EX0 = EXn for all n meaning ESN∧n =
µE(N ∧n). On the right hand side, 0 ≤ N ∧n ↑ N and N has finite expectation so E(N ∧n)→ EN .

The left hand side is a little more careful. First, we argue a reduction to the case that ζi ≥ 0. If not,
let ζi = ζ+

i − ζ
−
i . Since the ζi are iid then so too are the ζ±i . Now ESN∧n = ES+

N∧n−ES
−
N∧n so if can

show each piece converges in an optional stopping way this suffices. Now if ζi ≥ 0 then SN∧n ≥ 0 and
is martingale, so we can apply the a.s. convergence (take −S ≤ 0 to bound sup) and SN∧n → SN a.s..
Now with a.s. convergence we have convergence of the expectations so ESN∧n → ESN as desired.

66 Apply optional stopping to get a formula for the probability that the simple sym-
metric random walk on Z, started at 0, hits some −a before b? What is the expected
time it takes for either of these to happen?

Let Sn be our simple symmetric random walk. Define N = inf{n : Sn = −a or Sn = b}. If we can
apply optional stopping to SN∧n −N ∧ n then ESN = ES0 = 0 and we can directly compute ESN in
terms of P (SN = −a).

We obtain optional stopping by showing that EN <∞ and the conditional expectation of the incre-
ments is bounded. The latter is easy since E(|Sn+1 − Sn| | Fn) = E(1 | Fn) ≤ 1 <∞. Now to bound
N , observe that in a+b steps if every step is in the same direction we will trigger N , so if P (N > a+b)
then we can’t take all steps in the same direction so P (N > a + b) < 1 − 2a+b. If we take m(a + b)
steps we can repeat this calculation m times to get P (N > m(a + b)) < (1 − 2a+b)m. Since this is a
gemetric series that has a finite sum, EN <∞.

Now applying optional stopping

0 = ESN = −aP (SN = −a) + b(1− P (SN = −a)) =⇒ P (SN = −a) =
b

a+ b
.

Now to compute EN we want to look at Xn = S2
n−n which is martingale (σ = 1). Applying bounded

optional stopping, E(S2
N∧n−N ∧n) = EX0 = 0 so ES2

N∧n = E(N ∧n). The right hand side converges
to EN by monotone convergence. The left hand side is a martingale that is bounded below by 0 so
taking −S2

N∧n gives a.s. convergence to S2
N . Hence EN = ES2

N = a2P (a)+b2P (b) = a2b
a+b+ b2a

a+b = ab.

Chapter 5 - Markov Chains

5.1 Examples

67 Give an example of a Markov chain. What about a markov chain that is also
martingale?

A markov chain is “memory-less” sequence of random variables, so a random walk is an example,
betting in a casino is an example. Branching processes are another.
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Random walks that are symmetric are also martingale since the probabilities balance out. Betting in
a casino on a fair game would be martingale.

68 Give the transition probabilities for Ehrenfest chain.

The Ehrenfest chain is the markov chain described by partitioning a box into two sides and distributing
m marbles between the two sides. At each step, randomly select a marble from the box as a whole
(with equal prob for all marbles) and move that marble to the other side. Let Xn be the fraction of
marbles on the left side (or right by symmetry but fix one).

Then if Xn = r the probability that Xn = r+ 1 is p(r, r+ 1) = m−r
m and Xn = r− 1 is p(r, r− 1) = r

n
and p(k, l) = 0 for all other pairs.

5.2 Construction, Markov Properties

69 What is the Markov Property? The Strong Markov Property?

The markov property is that the probability of Xn depends only on Xn−1. Formally, for any event A
and Fn−1 = σ(X1, . . . , Xn−1), P (Xn ∈ A | Fn−1) = P (Xn ∈ A | Xn−1).

The strong markov property generalizes this to stopping times. So if N is a stopping time and
FN = {A : A ∩ {N = n} ∈ Fn} then P (XN+1 ∈ A | FN ) = P (XN+1 | XN ).

Both properties extend beyond the ‘next’ state so that P (Xn+t ∈ A | Fn−1) = P (Xn+t ∈ A | Xn−1).

5.3 Recurrence and Transience

70 Define recurrence and transience. What does “recurrence is contagious” mean?
Prove it.

Recurrence is a property of a state the ρxx = Px(Tx < ∞) = 1, i.e. the probability of starting at x
and returning to x in finite time is 1.

Claim: If x, y are in an irreducible set (or just ρxy > 0) and x is recurrent, then y is recurrent also.

Proof. Let N(y) be the number of visits to y, we show that EyN(y) = ∞ and use this to show that
ρyy = 1.

First, EyN(y) =
∑∞

n=0 p
n(y, y) ≥

∑∞
k=0 p

a(y, x)pk(x, x)pb(x, y) = pa(y, x)pb(x, y)
∑∞

k=0 p
k(x, x) =

pa(y, x)pb(x, y)ExN(x).

Next we show that EzN(z) =∞ iff ρzz = 1 which follows immediately from the following:

EzN(z) =

∞∑
n=0

Pz(N(z) ≥ n) =

∞∑
n=0

ρnzz =
1

1− ρzz
.

Now if ρxx = 1, then ExN(x) = ∞ and since x, y are in an irreducible set we can find a, b such that
pa(y, x), pb(x, y) > 0 so then EyN(y) =∞ meaning ρyy = 1 and y is reccurent as well.

71 Give a decomposition for the set of recurrent states in a markov chain.

Let R be the collection of all reccurent states in a markov chain. We will show that R can be
decomposed into disjoint closed and irreducible collections.

Let x ∈ R and define Cx = {y : ρxy > 0}. We will show that ρxy > 0 is an equivalence relation on
reccurent states. First, ρxx = 1 > 0 so it is reflexive. Second, if ρxy > 0 then since x is recurrent it
must be able to get back so that ρyx > 0 too. Finally, if ρxy, ρyz > 0 then there exists some n,m such
that pn(x, y) > 0 and pm(y, z) > 0 so then pn+m(x, z) ≥ pn(x, y)pm(y, z) > 0 making ρxz > 0. Thus
we can partition R into these sets.
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Now we show that Cx is irreducible and closed. If y, z ∈ Cx then ρxy, ρxz > 0 but by symmetry and
transitivity, this means ρyz > 0 so this is irreducible. Now if y ∈ Cx and ρyz > 0 then by transitivity,
ρxz > 0 so z ∈ Cx meaning it is closed.

5.5 Stationary Measures

72 Let p have a stationary measure, can you say anything recurrent states? What can
you add to say something about recurrent states?

Initially not much, might not even have one for example symmetric random walk of Z all states are
transient but the uniform measure is a stationary measure.

If the stationary measure can be scaled to be a distribution then on an irreducible subset taking
positive probabilities all states are positive recurrent.

5.6 Asymptotic Behavior

73 Give an example of a periodic markov chain and explain why it cannot converge.

The Ehrenfest chain has period 2, since the parity of Xn changes at each step, meaning that pn(x, x) =
0 when n is odd. This chain cannot converge for exactly this reason, if π were a stationary measure,
and x is any state with positive mass (which will be recurrent), |pn(x, x) − π(x)| will infinitely often
take the value |π(x)| > 0 so cannot converge to zero.

74 State and prove a convergence theorem for markov chains.

Convergence: If p is a markov chain that is irreducible and aperiodic with a stationary measure π,
then pn → π (convergence of measures).

Proof. We proceed by constructing a paired markov chain X × Y both with the same transition
probability p but X starting at some state x and Y starting with the initial stationary distribution π.

Define the transition probability p̄((a, b), (c, d)) = p(a, c)p(b, d). We first show that this is irreducible.
Take any two states (a, b) and (c, d). We know that p is irreducible so for some n,m we have pn(a, c) > 0
and pm(b, d) > 0. Furthermore, since p is aperiodic, for some M for every ` ≥ M , p`(y, y) > 0 for
y ∈ {a, b, c, d}. Then

p̄M+n+m((a, b), (c, d)) = pM+n+m(a, c)pM+n+m(b, d) ≥ pn(a, c)pM+m(c, c)pm(b, d)pM+n(d, d) > 0

so p̄ is irreducible.

Using the definitions of stationary distributions, we see that π̄ = ππ is a stationary on p̄. Since p̄
is irreducible, this means every state is positive recurrent, and thus recurrent. Let (y, y) be some
state in the diagonal, we will show that T(y,y) the stopping time when X × Y = (y, y) is a.s. finite.
Positive recurrent means that E(y,y)T(y,y) < ∞ and since we are irreducible the expected value from
any starting position is still finite, meaning T(y,y) is a.s. finite too.

Now let T be the stopping time of hitting the diagonal where Xn = Yn. Then T < T(y,y) <∞ a.s.. So
in particular P (T > n)→ 0 as n→∞.

Now using the strong markov property,

P (Xn = y) = P (Xn = y, T ≤ n) + P (Xn = y, T > n) ≤ P (Yn = y) + P (Xn = y, T > n)

and the same holds switching Xn and Yn so that |P (Xn = y) − P (Yn = y)| ≤ P (Xn = y, T >
n) + P (Yn = y, T > n). Summing over all states y we have∑

y

|P (Xn = y)− P (Yn = y)| =
∑
y

|pn(x, y)− π(y)| ≤ 2P (T > n)→ 0 as n→∞.
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