UC Berkeley Qualifying Exam

Anya Michaelsen, October 2021
Probability Theory Study Guide

Major topic: Probability Theory (Probability)

References: Durrett, Probability: Theory and Examples 5th Ed., Chapters 1-5

- Preliminaries: σ-algebras, Dynkin's π - λ theorem, independence, Borel-Cantelli lemmas, Kolmogorov's 0-1 law, Kolmogorov's maximal inequality, strong and weak laws of large numbers
- Central limit theorems: weak convergence, characteristic functions, tightness, I.I.D. central limit theorem, Lindeberg-Feller central limit theorem
- Conditioning: conditional probability and expectation, regular conditional probabilities
- Martinagles: stopping times, upcrossing inequality, uniform integrability, A.S. convergence, Doob's decomposition, Doob's inequality, L^{p} convergence, L^{1} convergence, reverse martingale convergence, optional stopping theorem, Wald's identity
- Markov chains: countable state space, stationary measures, convergence theorems, recurrence and transience, asymptotic behavior

Additional References:

- Probability with Martingales by David Williams

Contents

Memorization (- key terms -) 10
Chapter 1 - Preliminaries 10
1.1 Probability Spaces 10
1 probability space, measure space 10
$2 \quad \sigma$-field/algebra, σ-field generated by \mathcal{A} 10
3 measure, probability measure 10
4 monotonicity, subadditivity 10
5 continuity from below/above 10
6 discrete probability spaces 10
7 Borel sets 10
8 Stieltjes measure function 11
9 Lebesgue measures on \mathbb{R} and \mathbb{R}^{d} 11
10 semi-algebra, algebra (field), algebra generated by \mathcal{S} 11
11 measure on an algebra 11
12σ-finite 11
13 countably generated σ-field/algebra 11
1.2 Distributions 11
14 random variable (\mathcal{F}-measurable) 11
15 indicator function of a set 11
16 distribution (function) of a random variable 11
17 equal in distribution 11
18 density functions 12
19 uniform distribution on $(0,1)$ 12
20 absolutely continuous distribution function 12
21 discrete probability measure/distribution function 12
22 point mass distribution function 12
1.3 Random Variables 12
23 measurable map 12
24 random variable, random vector 12
$25 \quad \sigma$-field generated by a measurable map 12
26 properties of combining measurable maps 12
27 random variables converging almost surely 12
28 extended real line 13
1.4 Integration 13
29 simple function 13
30 integration of simple functions 13
$31 \phi \geq \psi$ almost everywhere 13
32 integral of bounded functions 13
33 integral of non-negative functions 13
34 integrable functions 13
35 integral of (integrable) functions 13
36 basic properties of integrals 13
1.5 Properties of the Integral 14
37 Jensen's Inequality (integral) 14
$38\|f\|_{p}$ 14
39 Hölder's Inequality (integral) 14
40 Cauchy-Schwarz Inequality 14
41 Bounded Convergence Theorem 14
42 Fatou's Lemma 14
43 Monotone Convergence Theorem 14
44 Dominated Convergence Theorem 14
1.6 Expected Value 15
45 expected Value (mean) of R.V. (and basic properties) 15
46 Jensen's Inequality for $E X$ 15
47 Hölder's Inequality for $E X$ 15
48 Chebyshev's Inequality 15
49 Fatou's Lemma for $E X$ 15
50 Monotone convergence theorem for $E X$ 15
51 dominated convergence theorem for $E X$ 15
52 bounded convergence theorem for $E X$ 15
53 mean and variance of a R.V 15
$54 k$ th moment of X 15
55 computing $E X$ integrals (change of variable formula) 16
56 Bernoulli Distribution 16
57 Poisson Distribution 16
58 Other formulas for Expected Values 16
1.7 Product Measures, Fubini's Theorem 16
59 product measure 16
60 Fubini's Theorem 16
Chapter 2 - Law of Large Numbers 16
2.1 Independence 16
61 independence of σ-fields, random variables 16
62 Independence of events and arbitrary collections of events 17
63 Pairwise Independent, how it differs from Independent 17
64π-system, λ-system, relationship to σ-fields 17
65 Dynkin's $\pi-\lambda$ Theorem 17
66 distribution of collections of independent variables 17
67 expected value of product of independent variables 18
68 convolution (of distribution functions) 18
69 distributions of sums of variables 18
70 density function for sums of variables 18
71 Gamma density (parameters α, λ) 18
72 sums of exponential distributions 18
73 sums of normal distributions 18
2.2 Weak Laws of Large Numbers 18
74 convergences almost surely (almost everywhere) 18
$75 \quad L^{p}$ convergence 18
76 convergence in probability 18
77 i.i.d variables 18
78 Weak Law of Large Numbers 19
2.3 Borel-Cantelli Lemmas 19
79 Borel-Cantelli Lemma 19
80 Second Borel-Cantelli Lemma 19
2.4 Strong Law of Large Numbers 19
81 Strong Law of Large Numbers 19
2.5 Convergence of Random Series 19
82 tail σ-field 19
83 Kolmogorov's 0-1 Law 19
84 exchangeable σ-field and Hewitt-Savage 0-1 Law 20
85 Kolmogorov's Maximal Inequality 20
86 General Idea of Kolmogorov's Three Series Theorem 20
Chapter 3 - Central Limit Theorems 20
3.1 The De Moivre-Laplace Theorem 20
87 Stirling's Formula 20
3.2 Weak Convergence 20
88 weak convergence 20
89 (equivalent) properties of weak convergence 20
90 Helly's Selection Theorem/vague convergence 20
91 tight 20
92 tightness criteria 20
3.3 Characteristic Functions 21
93 characteristic function 21
94 properties of characteristic functions 21
95 combining characteristic functions 21
96 characteristic function examples 21
97 inversion formula for characteristic functions 21
3.4 Central Limit Theorems 21
98 i.i.d. Central Limit Theorem 21
99 Lindeberg-Feller Central Limit Theorem 21
3.6 Poisson Convergence 21
100 Poisson Convergence Theorem 21
101 Poisson Processes 22
3.10 Limit Theorems in \mathbb{R}^{d} 22
102 distribution functions in \mathbb{R}^{d} 22
103 characteristic functions in \mathbb{R}^{d} 22
104 Central Limit Theorem in \mathbb{R}^{d} 22
Chapter 4 - Martingales 22
4.1 Conditional Expectation 22
105 conditional expectation 22
106 major examples of conditional expectation 22
$107 P(A \mid \mathcal{F}), P(A \mid B), E(X \mid Y)$ 23
108 Properties of $E(X \mid \mathcal{F})$ 23
109 Jensen's Inequality for Conditional Probability 23
110 regular conditional probabilities 23
4.2 Martingales, Almost Sure Convergence 23
111 filtration, and adapted to filtration 23
112 martingale, submartingale, supermartingale 23
113 linear martingales 24
114 functions of martingales 24
115 predictable sequence 24
116 Classical Martingale Betting Strategy 24
117 stopping times 24
118 Upcrossing Inequality 24
119 Martingale A.S. Convergence Theorem 24
4.3 Examples 24
120 Bounded Increments Example 24
121 Doob's Decomposition 25
122 Polya's Urn 25
4.4 Doob's Inequality, Convergence in $L^{p}, p>1$ 25
123 Inequality for expected values of X_{N} 25
124 Doob's Inequality 25
$125 L^{p}$ maximal inequality 25
$126 L^{p}$ convergence 25
4.6 Uniform Integrability, Convergence in L^{1} 26
127 Uniform integrable 26
128 pre- L^{1} convergence theorem 26
$129 L^{1}$ convergence theorem 26
4.7 Backwards Martingales 26
130 Backwards martingale 26
131 Convergence Theorem for Backwards Martingales 26
4.8 Optional Stopping Theorems 26
132 Optional Stopping 26
133 Exampes of Optional Stopping Theorems 26
134 Wald's Identity 26
Chapter 5-Markov Chains 27
5.1 Examples 27
135 Markov Chain 27
136 transition probability 27
5.2 Construction, Markov Properties 27
137 Markov Property 27
138 Strong Markov Property 27
5.3 Recurrence and Transience 27
$139 \rho_{x y}, T_{y}^{k}$ 27
140 recurrence 27
141 transience 27
142 closed 27
143 irreducible 27
5.5 Stationary Measures 27
144 stationary measure 27
145 reversible measure 28
146 stationary distribution 28
147 positive recurrent and null recurrent 28
148 Thm for Existence for Stationary Distribution 28
5.6 Asymptotic Behavior 28
149 period for a markov chain 28
150 aperiodic 28
151 Convergence Theorem for Markov Chains 28
Probability Theory Quals Questions (- best questions -) 29
Chapter 1 - Measure Theory 29
1.1 Probability Spaces 29
1 Show that \mathcal{R}^{d}, the Borel sets on \mathbb{R}^{d}, is countably generated 29
2 How do σ-fields, semialgebras, and algebras relate? What are examples/non-examples of each? 29
3 How do 'measures' extend from semi-algebras to algebras to σ-algebras? 30
4 Let $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \cdots$ be σ-algebras, what can we say about $\cup_{i} \mathcal{F}_{i}$? 30
1.2 Distributions 30
5 Suppose X and Y are random variables on (Ω, \mathcal{F}, P) and let $A \in \mathcal{F}$. If $Z(\omega)=X(\omega)$ for $\omega \in A$ and $Z(\omega)=Y(\omega)$ for $\omega \notin A$ then Z is a random variable. 30
6 Show that a distribution function has at most countably many discontinuities 30
7 What properties characterize distribution functions? 31
8 Give an example of a density function whose distribution function has no closed form. 31
9 Give an example of a distribution function with dense discontinuities. 31
10 Given a random variable with density function f, derive the density function for X^{2}. 31
1.3 Random Variables 32
11 What is the extended real line? Why do we extend random variables to it? 32
12 If X and Y are two random variables, show that $X+Y$ is one too. 32
13 What is the smallest σ-field that makes all continuous functions $\mathbb{R}^{d} \rightarrow \mathbb{R}$ measurable? 32
1.4 Integration 32
14 What are integrable functions? How do we develop integration of them? 32
1.5 Properties of the Integral 32
15 Show that $\|f\|_{p} \rightarrow\|f\|_{\infty}$ when μ is a probability measure. What if μ is only finite? 32
16 State Hölder's Inequality. What happens when $p=1$ and $q=\infty$? 33
17 When does $\int \sum_{n} f_{n} d \mu=\sum_{n} \int f_{n} d \mu$? 33
1.6 Expected Value 33
18 Let $f \geq 0$, how can we approximate f from below with f_{n} simple functions? 33
1.7 Product Measures, Fubini's Theorem 33
19 State Fubini's Theorem. What if instead we know that $\int_{X} \int_{Y}|f(x, y)| d \mu_{2} d \mu_{1}<\infty$, what can we conclude? 33
20 State Fubini's Theorem. What happens if we drop each of the conditions? 34
21 Use Fubini's Theorem to derive an expression for $E|X|$. 34
Chapter 2 - Laws of Large Numbers 34
2.1 Independence 34
22 State Dynkin's $\pi-\lambda$ Theorem. Why is it significant? 34
23 Give an example of four random variables where any three are independent but all four are not. 35
24 If two collections of sets are independent, are their generated σ-fields also independent? When can we ensure that they are? 35
25 Show that the sum of two independent Poisson distributions is again Poisson. 35
26 Given distribution functions F_{1}, \ldots, F_{n}, how can you construct independent random variables with these distribution functions? 35
2.2 Weak Laws of Large Numbers 36
27 State different types of convergences, how do they compare? Give distinguishing ex- amples for each. 36
28 What is the Weak Law of Large Numbers? Sketch a proof. What if we don't have finite variance? 36
2.3 Borel-Cantelli Lemmas 37
29 What are the Borel-Cantelli Lemmas? How do they relate? 37
30 What is the second Borel-Cantelli Lemma? What happens if we remove the indepen- dence condition? 37
31 Assume $X_{k} \rightarrow X$ in probability and g is a continuous function. Is it true that $g\left(X_{k}\right) \rightarrow$ $g(X)$? 37
32 Use the Borel-Cantelli Lemmas to construct a sequence of random variables that con- verges in probability but not almost surely. 37
2.4 Strong Law of Large Numbers 38
33 State the Strong Law of Large Numbers. Sketch a proof (you may assume $E X_{i}^{4}<\infty$). Can we weaken the assumptions? What happens if $E\left|X_{i}\right|=\infty$? 38
34 Let X_{1}, X_{2}, \ldots be i.i.d and non-negative with $E X_{i}=\infty$. What can we say about S_{n} / n ? 38
2.5 Convergence of Random Series 39
35 Consider a sequence of i.i.d variables X_{1}, X_{2}, \ldots. How can we express $X_{n} \rightarrow 0$ a.s. in terms of a convergence of something in probability? 39
36 What is Kolmogorov's 0-1 Law. What is the definition of a tail σ-algebra? What about tail random variables? 39
37 State Kolmogorov's Maximal Inequality. How does it compare to Chebyshev's Inequality? 39
Chapter 3-Central Limit Theorems 39
3.1 The De Moivre-Laplace Theorem 39
38 Give a concrete example of the Central Limit Theorem. How could you prove this directly? 39
3.2 Weak Convergence 40
39 What is weak convergence? How does it relate to convergence in probability and a.s. convergence? 40
40 What is an example of a r.v. that converges weakly but not in probability? 40
41 Why do we only get convergence at continuity points for weak convergence? 40
3.3 Characteristic Functions 40
42 What is the significance of the inversion formula for characteristic functions? 40
43 Give an example where the characteristic functions φ_{n} of X_{n} converges to $\varphi(t)$ discon- tinuous at $t=0$. What is the limit of the distribution function of the X_{n} ? 41
44 Suppose you have X_{1}, X_{2}, \ldots and corresponding characteristic functions $\varphi_{1}, \varphi_{2}, \ldots$ con- verging point-wise to $\varphi(t)$. What can you say? What is tightness? How do continuity and tightness relate? 41
3.4 Central Limit Theorems 41
45 State the i.i.d. central limit theorem. Prove it (possibly with added assumptions) 41
46 The type of convergence in the Central Limit Theorem is the convergence in distribu- tion. Why isn't the convergence almost sure? 41
47 Suppose X_{1}, X_{2}, \ldots are bounded but $\sum_{n} \operatorname{var}\left(X_{n}\right)=\infty$, what can you say about the limiting behavior of S_{n} ? 41
48 What is the Lindeberg-Feller Central Limit Theorem? How does it relate to the i.i.d. Central Limit Theorem? 42
3.6 Poisson Convergence 42
49 What is Poisson Convergence and why is it called the "law of rare events"? 42
3.10 Limit Theorems in \mathbb{R}^{d} 42
50 State and prove the Central Limit Theorem. Can you state a version of the Central Limit Theorem for random vectors? 42
Chapter 4 - Martingales 43
4.1 Conditional Expectation 43
51 What are regular condition probabilities? Why are they useful? 43
4.2 Martingales, Almost Sure Convergence 43
52 What are some examples of martingales? Submartingales? 43
53 What is the upcrossing inequality? Why is it useful? How is it proved? 43
54 Give the definition of martingales and state the a.s. convergence theorem for them. How can you prove this convergence theorem? 44
55 Can you give an example of a martingale that converges a.s. but not in L^{1} ? What condition can we put on the sequence to prevent this? 44
56 Let X_{n} be a martingale with respect to \mathcal{F}_{n}, and suppose $E\left(X_{n}^{2}\right) \leq B<\infty$ for all n. What can you conclude about X_{n} ? 44
57 Let X_{n} be a submartingale, H_{n} be a predictable sequence, and N a stopping time. Show that $(H \cdot X)_{n}$ and $X_{N \wedge n}$ are both submartingale as well. 45
4.3 Examples 45
58 Second Borel-Cantelli Lemma Version II 45
4.4 Doob's Inequality, Convergence in $L^{p}, p>1$ 45
59 When can we conclude L^{p} convergence for martingales? How is it proved? Is there a similar proof for L^{1} ? 45
60 How does Doob's Inequality relate to Kolmogorov's Maximal Inequality? 46
4.6 Uniform Integrability, Convergence in L^{1} 46
61 Show that if X_{n} is uniformly integrable and N is a stopping time that $X_{N \wedge n}$ is also uniformly integrable. 46
4.7 Backwards Martingales 46
62 What are backwards martingales? What can you say about their convergence? 46
63 Use reverse martingales to derive the SLLN. Hint: let $\mathcal{F}_{-n}=\sigma\left(S_{n}, X_{n+1}, X_{n+2}, \ldots\right)$ 47
4.8 Optional Stopping Theorems 47
64 What is optional stopping? What are some conditions under which it holds? 47
65 Let $\zeta_{1}, \zeta_{2}, \ldots$, be i.i.d. with $E \zeta_{i}=\mu, N$ a stopping time with finite expectation. Show that $E S_{N}=\mu E N$. 48
66 Apply optional stopping to get a formula for the probability that the simple symmetric random walk on \mathbb{Z}, started at 0 , hits some $-a$ before b ? What is the expected time it takes for either of these to happen? 48
Chapter 5-Markov Chains 48
5.1 Examples 48
67 Give an example of a Markov chain. What about a markov chain that is also martingale? 48
68 Give the transition probabilities for Ehrenfest chain. 49
5.2 Construction, Markov Properties 49
69 What is the Markov Property? The Strong Markov Property? 49
5.3 Recurrence and Transience 49
70 Define recurrence and transience. What does "recurrence is contagious" mean? Prove it. 49
71 Give a decomposition for the set of recurrent states in a markov chain. 49
5.5 Stationary Measures 50
72 Let p have a stationary measure, can you say anything recurrent states? What can you add to say something about recurrent states? 50
5.6 Asymptotic Behavior 50
73 Give an example of a periodic markov chain and explain why it cannot converge 50
74 State and prove a convergence theorem for markov chains. 50

Memorization (- key terms -)

Chapter 1 - Preliminaries

1.1 Probability Spaces

1 probability space, measure space

probability space: $(\Omega, \mathcal{F}, P)-\Omega$ outcomes, \mathcal{F} events, and $P: \mathcal{F} \rightarrow[0,1]$ assigns probabilities to events measure space: $(\Omega, \mathcal{F})-\Omega$ outcomes, \mathcal{F} events
2σ-field/algebra, σ-field generated by \mathcal{A}
σ-field: \mathcal{F} a non-empty collection of subsets of Ω satisfying:
i $A \in \mathcal{F} \Longrightarrow A^{C} \in \mathcal{F}$
ii $A_{i} \in \mathcal{F}$ countable sequence, then $\cup_{i} A_{i} \in \mathcal{F}$
σ-field generated by \mathcal{A} : smallest σ-field containing the collection \mathcal{A}, denoted $\sigma(\mathcal{A})$
3 measure, probability measure
measure: "non-negative countable additive set function", i.e. $\mu: \mathcal{F} \rightarrow \mathbb{R}$ such that
i $\mu(A) \geq \mu(\emptyset)$ for all $A \in \mathcal{F}$
ii $A_{i} \in \mathcal{F}$ countable sequence of disjoint sets, then $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$
probability measure: $\mu(\Omega)=1$, usually denoted P
4 monotonicity, subadditivity
μ a measure on (Ω, \mathcal{F})
monotonicity: $A \subseteq B \Longrightarrow \mu(A) \leq \mu(B)$
subadditivity: $A \subset \cup_{i} A_{i} \Longrightarrow \mu(A) \leq \sum_{i} \mu\left(A_{i}\right)$

5 continuity from below/above

μ a measure on (Ω, \mathcal{F})
if $A_{i} \uparrow A\left(A_{1} \subset A_{2} \subset \cdots\right.$ and $\left.\cup_{i} A_{i}=A\right)$ then $\mu\left(A_{i}\right) \uparrow \mu(A)$
if $A_{i} \downarrow A\left(A_{1} \supset A_{2} \supset \cdots\right.$ and $\left.\cap_{i} A_{i}=A\right)$ then $\mu\left(A_{i}\right) \downarrow \mu(A)$

6 discrete probability spaces

Ω a countable set, \mathcal{F} all subsets of Ω

$$
P(A)=\sum_{\omega \in A} p(\omega)
$$

where $p(\omega) \geq 0$ and $\sum_{\omega \in \Omega} p(\omega)=1$ [i.e. each ω gets assigned its own point probability and sets are simply sums of the point probabilities]
Discrete uniform probability $-\Omega$ finite and $p(\omega)=1 /|\Omega|$ for all $\omega \in \Omega$.
7 Borel sets
the smallest σ-algebra containing the open sets in \mathbb{R}^{d} (with the usual Euclidean topology)

8 Stieltjes measure function

A function $F: \mathbb{R} \rightarrow \mathbb{R}$ such that F is (i) nondecreasing and (ii) right continuous $\left(\lim _{y \downarrow x} F(y)=F(x)\right)$
$9 \quad$ Lebesgue measures on \mathbb{R} and \mathbb{R}^{d}
\mathbb{R} : The unique measure on $(\mathbb{R}, \mathcal{R})$ such that $\mu((a, b])=b-a$.
\mathbb{R}^{d} : The unique measure on $(\mathbb{R}, \mathcal{R})$ such that $\mu(A)=$ area of A for all finite rectangles A.
10 semi-algebra, algebra (field), algebra generated by \mathcal{S}
semi-algebra: \mathcal{S} such that (i) closed under finite intersection, (ii) $S \in \mathcal{S}$ implies S^{C} is a finite disjoint union of sets in \mathcal{S}
algebra: \mathcal{A} such that (i) closed under finite intersections, (ii) closed under complements (it follows closed under finite unions)
algebra generated by \mathcal{S} : $\overline{\mathcal{S}}$, collection of finite disjoint unions of sets in \mathcal{S} (is an algebra)

11 measure on an algebra

given algebra \mathcal{A} a measure on \mathcal{A}, μ is a set function $\mu: \mathcal{A} \rightarrow \mathbb{R}$ such that
(i) $\mu(A) \geq \mu(\emptyset)=0$ for all $A \in \mathcal{A}$ and
(ii) $A_{i} \in \mathcal{A}$ are disjoint and their union is in \mathcal{A}, then $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$.
12σ-finite
a measure μ on an algebra \mathcal{A} is σ-finite if there is a sequence of sets $A_{n} \in \mathcal{A}$ such that $\mu\left(A_{n}\right)<\infty$ for all n and $\cup_{n} A_{n}=\Omega$ (could also assume that $A_{n} \uparrow \Omega$ or the A_{n} are disjoint)

13 countably generated σ-field/algebra

\mathcal{F}, a σ-field is countably generated if there is a countable collection $\mathcal{C} \subset \mathcal{F}$ such that $\sigma(\mathcal{C})=\mathcal{F}$

1.2 Distributions

14 random variable (\mathcal{F}-measurable)

a real valued function $X: \Omega \rightarrow \mathbb{R}$ such that for every Borel set $B \subset \mathbb{R}, X^{-1}(B) \in \mathcal{F}$, the specific σ-field on Ω (if specification needed, X is \mathcal{F}-measurable)

15 indicator function of a set

example of a random variable where $A \in \mathcal{F}$

$$
1_{A}(\omega)= \begin{cases}1 & \omega \in A \\ 0 & \omega \notin A\end{cases}
$$

16 distribution (function) of a random variable
When X is a random variable on a probability space (Ω, \mathcal{F}, P) then its distribution is a probability measure, μ, on \mathbb{R} given by

$$
\mu(A)=P(X \in A)=P\left(X^{-1}(A)\right)
$$

the associated distribution function is given by $F(x)=P(X \leq x)=P\left(X^{-1}((-\infty, x])\right)$

17 equal in distribution

two random variables whose resulting distributions (measures) on \mathbb{R} are the same, this occurs exactly when they have the same distribution function also, denoted by $X \stackrel{d}{=} Y$
a function f such that the distribution function $F(x)=P(X \leq x)$ satisfies $F(x)=\int_{-\infty}^{x} f(y) d y$.
19 uniform distribution on $(0,1)$
density function $f(x)=1$ where $x \in(0,1)$ (0 everywhere else)

$$
F(x)= \begin{cases}0 & x \leq 0 \\ x & 0 \leq x \leq 1 \\ 1 & x>1\end{cases}
$$

20 absolutely continuous distribution function
a distribution function on \mathbb{R} is absolutely continuous if it has a density function

21 discrete probability measure/distribution function

probability measure P with a countable set S such that $P\left(S^{C}\right)=0$ (example point mass below)

22 point mass distribution function

$F(x)=1$ for $x \geq 0$ (or another point of your choosing) and $F(x)=0$ for $x<0$.
this is a discrete probability measure realized by the set $S=\{0\}$

1.3 Random Variables

23 measurable map
a function $X: \Omega \rightarrow S$ between measurable spaces (Ω, \mathcal{F}) and $(S, \mathcal{S})(\mathcal{F}$ and $\mathcal{S} \sigma$-fields) such that for all $B \in \mathcal{S}$

$$
X^{-1}(B)=\{\omega: X(\omega) \in B\} \in \mathcal{F}
$$

24 random variable, random vector
random variable: a measurable function $\Omega \rightarrow(\mathbb{R}, \mathcal{R})$
random vector: a measurable function $\Omega \rightarrow\left(\mathbb{R}^{d}, \mathcal{R}^{d}\right), d>1$
$25 \quad \sigma$-field generated by a measurable map
Given $X: \Omega \rightarrow S$ with (S, \mathcal{S}),

$$
\sigma(X)=\{\{X \in B\}: B \in \mathcal{S}\}=\{\{\omega: X(\omega) \in B\}: B \in \mathcal{S}\}
$$

26 properties of combining measurable maps

composition of measurable maps is measurable
summation of a finite number of measurable maps is measurable
X_{1}, \ldots, X_{n} random variables, and $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ measurable, then $f\left(X_{1}, \ldots, X_{n}\right)$ measurable inf, sup limsup, liminf of sequences of random variables are random variables
27 random variables converging almost surely
Given random variables $X_{i}: \Omega \rightarrow \mathbb{R}$,

$$
\Omega_{0}=\left\{\omega: \lim _{n} X_{n}(\omega) \text { exists }\right\}
$$

the X_{i} 's converge almost surely (or 'almost everywhere') when $P\left(\Omega_{0}\right)=1$.

28 extended real line
$\mathbb{R}^{*}=[-\infty, \infty]$ with Borel sets generated by $[-\infty, a),(a, b),(b, \infty]$

1.4 Integration

29 simple function
$\varphi=\sum_{i=0}^{n} a_{i} 1_{A_{i}}$ where A_{i} are disjoint sets with $\mu\left(A_{i}\right)<\infty$

30 integration of simple functions

$$
\int \varphi d \mu=\int \sum_{i=0}^{n} a_{i} 1_{A_{i}} d \mu=\sum_{i=0}^{n} a_{i} \mu\left(A_{i}\right)
$$

$31 \phi \geq \psi$ almost everywhere
$\phi \geq \psi$ almost everywhere $\Longleftrightarrow \mu(\{\omega: \phi(\omega)<\psi(\omega)\})=0$

32 integral of bounded functions

$$
\int f d \mu=\sup _{\varphi \leq f} \int \varphi d \mu=\inf _{\psi \geq f} \int \psi d \mu
$$

33 integral of non-negative functions

$$
\int f d \mu=\sup _{0 \leq h \leq f}\left\{\int h d \mu: h \text { bounded, } \mu(\{x: h(x)>0\})<\infty\right\}
$$

34 integrable functions

$\int|f| d \mu<\infty$ (since $|f|$ is non-negative function)

35 integral of (integrable) functions

$f^{+}=\max (f, 0)$ and $f^{-}=\max (-f, 0)$
so that $f=f^{+}-f^{-}$and f^{+}, f^{-}are both non-negative functions $\int f d \mu=\int f^{+} d \mu-\int f^{-} d \mu$
36 basic properties of integrals
If f, g are both integrable/non-negative/bounded/simple:
(i) If $f \geq 0$ a.e. then $\int f d \mu \geq 0$
(ii) For all $a \in \mathbb{R}, \int a f d \mu=a \int f d \mu$
(iii) $\int f+g d \mu=\int f d \mu+\int g d \mu$
(iv) If $g \leq f$ a.e. $\int g d \mu \leq \int f d \mu$
(v) If $g=f$ a.e. $\int g d \mu=\int f d \mu$
(vi) $\left|\int f d \mu\right| \leq \int|f| d \mu$

1.5 Properties of the Integral

37 Jensen's Inequality (integral)
If φ is convex (technical: $\lambda \varphi(x)+(1-\lambda) \varphi(y) \geq \varphi(\lambda x+(1-\lambda) y), \lambda \in(0,1))$ μ probability measure, and f and $\varphi(f)$ integrable

$$
\varphi\left(\int f d \mu\right) \leq \int \varphi(f) d \mu
$$

$38\|f\|_{p}$

$$
\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}
$$

for $1 \leq p<\infty$
39 Hölder's Inequality (integral)
If $p, q \in(1, \infty)$ and $\frac{1}{p}+\frac{1}{q}=1$ then

$$
\int|f g| d \mu \leq\|f\|_{p}\|g\|_{q}
$$

40 Cauchy-Schwarz Inequality

$$
\int|f g| d \mu \leq\|f\|_{2}\|g\|_{2}=\sqrt{\int f^{2} d \mu} \sqrt{\int g^{2} d \mu}
$$

41 Bounded Convergence Theorem
Finite measure set E ('bounded': $\mu(E)<\infty$) and f_{n} supported on E (vanishes on E^{C})
f_{n} bounded (i.e. $\left|f_{n}\right| \leq M$ for some M)
$f_{n} \rightarrow f$ in measure (measure zero set in the limit $\left|f_{n}(\omega)-f(\omega)\right|>\varepsilon$)

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

42 Fatou's Lemma

$$
f_{n} \geq 0 \quad \Longrightarrow \quad \liminf _{n \rightarrow \infty} \int f_{n} d \mu \geq \int\left(\liminf _{n \rightarrow \infty} f_{n}\right) d \mu
$$

43 Monotone Convergence Theorem

$$
f_{n} \geq 0 \text { and } f_{n} \uparrow f \quad \Longrightarrow \quad \int f_{n} d \mu \uparrow \int f d \mu
$$

44 Dominated Convergence Theorem
If $f_{n} \rightarrow f$ a.e., $\left|f_{n}\right| \leq g$ for all n where g is integrable then

$$
\int f_{n} d \mu \rightarrow \int f d \mu
$$

1.6 Expected Value

45 expected Value (mean) of R.V. (and basic properties)
$X \geq 0$ a random variable on (Ω, \mathcal{F}, P) then

$$
E X=\int X d P
$$

(may be infinite)
By integral properties, $E(X+Y)=E X+E Y, E(a X+b)=a E(X)+b$ and $X \geq Y$ implies $E X \geq E Y$.

46 Jensen's Inequality for $E X$

If φ is convex, then $E(\varphi(X)) \geq \varphi(E(X))$ where both exist
47 Hölder's Inequality for $E X$
$p, q \in[1, \infty]$ with $1 / p+1 / q=1$

$$
E|X Y| \leq\|X\|_{p}\|Y\|_{q}
$$

where $\|X\|_{p}=\left(E|X|^{p}\right)^{1 / p}$ for $p<\infty$ and $\|X\|_{\infty}=\inf \{M: P(|X|>M)=0\}$
48 Chebyshev's Inequality
$\varphi: \mathbb{R} \rightarrow \mathbb{R}$ with $\varphi \geq 0$. For Borel set $A \in \mathcal{R}$ let $i_{A}=\inf \{\varphi(y): y \in A\}$ ('min' value of φ on A)

$$
i_{A} P(X \in A) \leq E(\varphi(X) ; X \in A) \leq E(\varphi(X))
$$

A common version:

$$
P(X \geq y) f(y) \leq E f(x)
$$

for example when $E X=0$

$$
a^{2} P(|X| \geq a) \leq E X^{2} \Longrightarrow P(|X| \geq a) \leq a^{-2} \operatorname{var}(X)
$$

49 Fatou's Lemma for EX

$$
\liminf _{n \rightarrow \infty} E X_{n} \geq E\left(\liminf _{n \rightarrow \infty} X_{n}\right)
$$

50 Monotone convergence theorem for $E X$
$X_{n} \geq 0$ and $X_{n} \uparrow X$ then $E X_{n} \uparrow E X$
51 dominated convergence theorem for $E X$
$X_{n} \rightarrow X$ and $\left|X_{n}\right| \leq Y$ for all n and $E Y<\infty$ then $E X_{n} \rightarrow E X$
52 bounded convergence theorem for $E X$
$X_{n} \rightarrow X$ and $\left|X_{n}\right| \leq M$ for all n then $E X_{n} \rightarrow E X$
53 mean and variance of a R.V.
mean is just expected value, $\mu=E X$
if $E X^{2}$ exists, then $\operatorname{var}(X)=E(X-\mu)^{2}$
$54 k$ th moment of X
$E\left(X^{k}\right)$

55 computing EX integrals (change of variable formula)
Measure space $(S, \mathcal{S}, P) X$ a random element (variable?) on (S, \mathcal{S}) with $\mu(A)=P(X \in A)=$ $P\left(X^{-1}(A)\right)$
If f measurable function $(S, \mathcal{S}) \rightarrow(\mathbb{R}, \mathcal{R})$ with $f \geq 0$ or $E|f(X)|<\infty$ then

$$
E f(x)=\int_{S} f(y) \mu(d y)=\int f d \mu
$$

If X has density function $F(x)=\int_{-\infty}^{x} g(x) d x$ then

$$
E f(X)=\int_{-\infty}^{\infty} f(x) g(x) d x
$$

56 Bernoulli Distribution

this is a discrete distribution
p some parameter, $P(X=1)=p$ and $P(X=0)=1-p$

57 Poisson Distribution

this is a discrete distribution
λ some parameter, $P(X=k)=e^{-\lambda} \lambda^{k} / k!$ for $k=0,1,2, \ldots$

58 Other formulas for Expected Values

If $X \geq 0 E X=\sum_{i=0}^{\infty} P(X \geq i)$ or $E X=\int_{0}^{\infty} P(X \geq x) d x$ (useful when nice formula for $P(X \geq x)$) so for example $E|X|=\int_{0}^{\infty} P(|X|>x) d x$ (can be derived by Fubini's Theorem)

1.7 Product Measures, Fubini's Theorem

59 product measure

Take $\left(X, \mathbb{A}, \mu_{1}\right)$ and $\left(Y, \mathcal{B}, \mu_{2}\right)$ with σ-finite measures, then $\mu=\mu_{1} \times \mu_{2}$ is the unique measure on $X \times Y$ such that $\mu(A \times B)=\mu_{1}(A) \mu_{2}(B)$
60 Fubini's Theorem
Fubini's gives conditions for switching multiple integrals using product spaces
Fubini's Theorem: Let μ_{1}, μ_{2} be σ-finite with $\mu=\mu_{1} \times \mu_{2}$. If $f \geq 0$ or $\int|f| d \mu<\infty$ then

$$
\int_{X} \int_{Y} f d \mu_{2} d \mu_{1}=\int_{X \times Y} f d \mu=\int_{Y} \int_{X} f d \mu_{1} d \mu_{2}
$$

Typical application to summation/sum+integral combinations

Chapter 2 - Law of Large Numbers

2.1 Independence

61 independence of σ-fields, random variables
independence for σ-fields: (finite version)
$\mathcal{F}_{1}, \ldots, \mathcal{F}_{n} \sigma$-fields (all contained in some larger σ-field with P probability measure) are independent
if for any choice of $A_{i} \in \mathcal{F}_{i}$ for all $i=1, \ldots, n$

$$
P\left(\cap_{i} A_{i}\right)=\prod_{i} P\left(A_{i}\right)
$$

(infinite collections are independent if all finite sub-collections are independent)

Independence for random variables:

X_{1}, \ldots, X_{n} random variables from $(\Omega, \mathcal{F}, P) \rightarrow(\mathbb{R}, \mathcal{R})$ are independent if $\sigma\left(X_{i}\right)$'s are all independent which is equivalent to when

$$
P\left(X_{1} \in C_{1}, \ldots, X_{n} \in C_{n}\right)=P\left(\cap_{i}\left\{X_{i} \in C_{i}\right\}\right)=\prod_{i} P\left(X_{i} \in C_{i}\right)
$$

for any collection of $C_{i} \in \mathcal{R}$

62 Independence of events and arbitrary collections of events

Most simply, $P(A \cap B)=P(A) P(B)$

Independence of Events:

Generally, A_{1}, \ldots, A_{n} are independent events in (Ω, \mathcal{F}, P) if for any sub-collection of sets (i.e. $I \subseteq$ $\{1,2, \ldots, n\}$

$$
P\left(\cap_{i \in I} A_{i}=\prod_{i \in I} P\left(A_{i}\right)\right.
$$

Independence of Collections of Sets: Given $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ collections of sets, these are independent if for any choice of $A_{i} \in \mathcal{A}_{i}$ of a subcollection (i.e. $I \subseteq\{1, \ldots, n\}$) we have $A_{i} \mathrm{~S}$ are independent. Can always assume $\Omega \in \mathcal{A}_{i}$ and take the full collection every time.

63 Pairwise Independent, how it differs from Independent

Any pairs are independent $(P(A \cap B)=P(A) P(B))$
Independent \Longrightarrow Pairwise Independent but pairwise is strictly weaker

Example:

X_{1}, X_{2}, X_{3} with $P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=1 / 2$
$A_{1}=\left\{X_{2}=X_{3}\right\}, A_{2}=\left\{X_{1}=X_{3}\right\}$, and $A_{3}=\left\{X_{1}=X_{2}\right\}$
$A_{1} \cap A_{2}=A_{1} \cap A_{2} \cap A_{3}$ so the probabilities are the same, but $P\left(A_{i}\right)=1 / 2$ so adding A_{3} changes the RHS of the independence equation.
64π-system, λ-system, relationship to σ-fields
π-system - closed under intersection
λ-system $-\Omega \in \mathcal{L}$, countable unions of increasing sets contained, and set subtraction contained ($A \subseteq$ $\left.B \Rightarrow B \cap A^{C} \in \mathcal{L}\right)$
$\pi-\lambda$ systems $\Longleftrightarrow \sigma$-algebra, so π, λ kinda split up the σ algebra properties

65 Dynkin's $\pi-\lambda$ Theorem

$\pi-\lambda$ Theorem: If \mathcal{P} is a π-system and \mathcal{L} is a λ-system with $\mathcal{P} \subseteq \mathcal{L}$ then $\sigma(\mathcal{P}) \subset \mathcal{L}$.
π-system - closed under intersection
λ-system $-\Omega \in \mathcal{L}$, countable unions contained, and set subtraction contained ($A \subseteq B \Rightarrow B \cap A^{C} \in \mathcal{L}$)

66 distribution of collections of independent variables

$Y=\left(X_{1}, \ldots, X_{n}\right)$ for independent random variables X_{i} each with distribution $\mu_{i}\left(A_{i}\right)=P\left(X_{i} \in A_{i}\right)$ (so Y a random vector) then the distribution measure for Y is $\mu=\mu_{1} \times \cdots \mu_{n}$ where $\mu\left(A_{1} \times A_{n}\right)=$ $\prod_{i} \mu_{i}\left(A_{i}\right)$.

If X_{1}, \ldots, X_{n} are independent variables and either all $X_{i} \geq 0$ OR all $E\left|X_{i}\right|<\infty$ then

$$
E\left(\prod_{i=1}^{n} X_{i}\right)=\prod_{i=1}^{n} E\left(X_{i}\right)
$$

68 convolution (of distribution functions)

F and G distribution functions

$$
(F * G)(z)=\int F(z-y) d G(y)=\int F(z-y) d \mu
$$

69 distributions of sums of variables

If X, Y are independent, with distribution functions $F(x)=P(X \leq x)$ and $G(y)=P(Y \leq y)$ (and $\mu(A)=P(Y \in A)$ distribution measure for $Y)$,

$$
P(X+Y \leq w)=\int F(w-y) d G(y)=\int F(w-y) d \mu
$$

70 density function for sums of variables
Given X, Y independent R.V.s with density functions f, g respectively, the density function for $X+Y$
is $\int_{\mathbb{R}} f(x-y) g(y) d y$

71 Gamma density (parameters α, λ)

Density function $f(x)=\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x} / \Gamma(\alpha)$ for $x \geq 0$ (and $f=0$ when $x<0$) where $\Gamma(\alpha)=$ $\int_{0}^{\infty} x^{\alpha-1} e^{-x}$, related to factorials.
72 sums of exponential distributions
If X_{1}, \ldots, X_{n} are all independent exponential distributions with λ, then $X_{1}+\cdots+X_{n}$ is Gamma distribution with $\alpha=n$ and $\lambda=\lambda$

73 sums of normal distributions

$N(\mu, a)+N(\nu, b)=N(\mu+\nu, a+b)$ (assuming independence!)

2.2 Weak Laws of Large Numbers

74 convergences almost surely (almost everywhere)
$\mu\left(\left\{x: f_{n}(x) \neq f(x)\right\}\right) \rightarrow 0$
$75 L^{p}$ convergence
$E\left|f_{n}-f\right|^{p} \rightarrow 0$
76 convergence in probability
for all $\varepsilon>0, P\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\varepsilon\right\}\right) \rightarrow 0$ (equivalent to $\geq \varepsilon$)
77 i.i.d variables
independent and identically distributed variables
same probabilities/expected values/variances etc and independent
example: repeated coin tosses, all have the same probabilities but do not affect each other

78 Weak Law of Large Numbers
Weak Law of Large Numbers: Let X_{1}, X_{2}, \ldots be i.i.d with finite variance (can weaken to $E\left|X_{i}\right|<$ $\infty)$ Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ and $\mu=E X_{1}$. Then $S_{n} / n \rightarrow \mu$ converges in probability.

2.3 Borel-Cantelli Lemmas

79 Borel-Cantelli Lemma

Borel-Cantelli Lemma

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty \Rightarrow P\left(A_{n} \text { i.o. }\right)=0=P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=P\left(\lim _{n \rightarrow \infty} \cup_{m=n}^{\infty} A_{m}\right)
$$

80 Second Borel-Cantelli Lemma

Second Borel-Cantelli Lemma: If A_{n} are independent and $\sum P\left(A_{n}\right)=\infty$ then

$$
P\left(\left\{x: x \in A_{n} \text { infinitely often }\right\}\right)=P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=P\left(\lim _{n \rightarrow \infty} \cup_{m=n}^{\infty} A_{m}\right)=P\left(A_{n} \text { infinitely often }\right)=1
$$

2.4 Strong Law of Large Numbers

81 Strong Law of Large Numbers
SLLN: Let X_{1}, X_{2}, \ldots be i.i.d. with $E X_{i}=\mu$ and $E X_{i}^{4}<\infty$. (can weaken to $E\left|X_{i}\right|<\infty$) Then

$$
\frac{S_{n}}{n}=\frac{X_{1}+\cdots X_{n}}{n} \xrightarrow{\text { a.s. }} \mu
$$

Generalizations:

Let X_{1}, X_{2}, \ldots be pairwise independent and identically distributed with $E X_{i}=\mu$ and $E\left|X_{i}\right|<\infty$. Then

$$
\frac{S_{n}}{n}=\frac{X_{1}+\cdots X_{n}}{n} \xrightarrow{\text { a.s. }} \mu
$$

Let X_{1}, X_{2}, \ldots be i.i.d with $E X_{i}^{+}=\infty$ and $E X_{i}^{-}<\infty$ (hence $E X_{i}=\infty$). Then

$$
\frac{S_{n}}{n}=\frac{X_{1}+\cdots X_{n}}{n} \xrightarrow{\text { a.s. }} E X_{i}=\infty
$$

2.5 Convergence of Random Series

82 tail σ-field
\mathcal{T} only depends on tail behavior, i.e. changing finitely many values does not affect it
Formally, $\mathcal{F}_{n}=\sigma\left(X_{n}, X_{n+1}, \ldots\right)$ and $\mathcal{T}=\cap_{n} \mathcal{F}_{n}$
Examples: $\left\{\lim _{n \rightarrow \infty} S_{n}\right.$ exists $\} \in \mathcal{T}, B_{n} \in \mathcal{R}$ then $\left\{X_{n} \in B_{n}\right.$ i.o. $\} \in \mathcal{T}$
83 Kolmogorov's 0-1 Law
X_{1}, X_{2}, \ldots are independent, then $A \in \mathcal{T}$ implies $P(A) \in\{0,1\}$ (almost always or almost never)
exchangeable σ-field invariant sets under finite permutation of values/variables (contains tail σ-field)
Hewitt-Savage 0-1 Law: If X_{1}, X_{2}, \ldots i.i.d then $A \in \mathcal{E}$ implies $P(A) \in\{0,1\}$

85 Kolmogorov's Maximal Inequality

$X_{1}, X_{2}, \ldots, X_{n}$ independent with $E X_{i}=0$ and $\operatorname{var}\left(X_{i}\right)<\infty, S_{n}=X_{1}+\cdots X_{n}$ as usual

$$
P\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) \leq x^{-2} \operatorname{var}\left(S_{n}\right)
$$

86 General Idea of Kolmogorov's Three Series Theorem

gives (3) equivalent conditions on X_{i} and their truncations to show that the series converges a.s.

Chapter 3-Central Limit Theorems

3.1 The De Moivre-Laplace Theorem

87 Stirling's Formula

$n!\sim n^{n} e^{-n} \sqrt{2 \pi n}$

3.2 Weak Convergence

88 weak convergence
$F_{n} \Rightarrow F_{\infty}$ when $\lim _{n} F_{n}(y)=F_{\infty}(y)$ for all points y where F_{∞} is continuous.
Equivalently, $X_{n} \Rightarrow X_{\infty}$ or $\mu_{n} \Rightarrow \mu_{\infty}$ where μ_{i} is the probability measure for X_{i}.
89 (equivalent) properties of weak convergence
$X_{n} \Rightarrow X_{\infty}$ if and only if $E g\left(X_{n}\right) \rightarrow E g\left(X_{\infty}\right)$ for all bounded continuous functions g.
$X_{n} \Rightarrow X_{\infty}$ if and only if there exists Y_{n} with the same distribution such that $Y_{n} \rightarrow Y_{\infty}$ a.s.
Also some equivalent conditions in terms of open/closed/Borel sets
90 Helly's Selection Theorem/vague convergence
Given a sequence F_{n} of dist. fun.
There is a subsequence $F_{n(k)}$ that 'weakly' converges to a function G that is right continuous and nondecreasing (but may not go to 0,1 in the limits).
91 tight
the sequence F_{n} is tight if for every $\varepsilon>0$ there is an M_{ε} so that

$$
\limsup _{n \rightarrow \infty} 1-F_{n}\left(M_{\varepsilon}\right)+F_{n}\left(-M_{\varepsilon}\right) \leq \varepsilon \quad \Longleftrightarrow \quad 1-\varepsilon \leq \liminf _{n \rightarrow \infty} F_{n}\left(M_{\varepsilon}\right)-F_{n}\left(-M_{\varepsilon}\right)
$$

92 tightness criteria

F_{n} has a subsequence converging weakly to G and G is a distribution function if and only if F_{n} are tight.

3.3 Characteristic Functions

93 characteristic function
$\varphi_{X}(t)=E\left(e^{i t X}\right)=E(\cos (t X))+i E(\sin (t X))$
94 properties of characteristic functions
$\varphi(0)=1 \quad \varphi(-t)=\overline{\varphi(t)} \quad|\varphi(t)| \leq E\left|e^{i t X}\right| \leq 1 \quad \varphi_{a X+b}(t)=\varphi(a t) e^{i t b}$

95 combining characteristic functions

X, Y independent $\Longrightarrow \varphi_{X+Y}(t)=\varphi_{X}(t) \varphi_{Y}(t)$

96 characteristic function examples

Normal distribution $\varphi(t)=e^{-t^{2} / 2}$
coin flip $\varphi(t)=E e^{i t X}=\frac{1}{2} e^{i t}+\frac{1}{2} e^{-i t}=\cos (t)$

97 inversion formula for characteristic functions

1-1 correspondence between φ and distribution functions
If $\varphi(t)=\int e^{i t x} \mu(d x)$ then

$$
\mu(a, b)+\frac{1}{2} \mu(\{a, b\})=\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \varphi(t) d t
$$

If $\int|\varphi(t)| d t<\infty$ then μ has density

$$
f(y)=\frac{1}{2 \pi} \int e^{-i t y} \varphi(t) d t
$$

3.4 Central Limit Theorems

98 i.i.d. Central Limit Theorem
X_{1}, X_{2}, \ldots i.i.d. with $E X_{i}=\mu$ and $\operatorname{var}\left(X_{i}\right)=\sigma^{2} \in(0, \infty)$

$$
\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \Rightarrow \chi
$$

where χ is the standard normal distribution ($\mu=0, \sigma=1$)

99 Lindeberg-Feller Central Limit Theorem

Triangular array $X_{n, m}$ independent variables for $1 \leq m \leq n$ where $E X_{n, m}=0$ and
(i) $\sum_{m=1}^{n} E X_{n, m}^{2} \rightarrow \sigma^{2}>0$ as $n \rightarrow \infty$
(ii) $\forall \varepsilon>0 \sum_{m=1}^{n} E\left(\left|X_{n, m}\right|^{2} ;\left|X_{n, m}\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$

$$
S_{n}=X_{n, 1}+\cdots+X_{n, n} \Rightarrow \sigma \chi
$$

3.6 Poisson Convergence

100 Poisson Convergence Theorem

$X_{n, m}$ independent Bernoulli variables for $1 \leq m \leq n$ with $P\left(X_{n, m}=1\right)=p_{n, m}=1-P\left(X_{n, m}=0\right)$
(i) $\sum_{m=1}^{n} p_{n, m} \rightarrow \lambda>0$ as $n \rightarrow \infty$
(ii) $\max _{1 \leq m \leq n} p_{n, m} \rightarrow 0$ as $n \rightarrow \infty$

$$
S_{n}=X_{n, 1}+\cdots+X_{n, n} \Rightarrow \operatorname{Poisson}(\lambda)
$$

101 Poisson Processes

Generalizes Poisson convergence to larger class of variables taking non-negative integer values and still converging to Poisson (λ).

3.10 Limit Theorems in \mathbb{R}^{d}

102 distribution functions in \mathbb{R}^{d}

$F(y)=P(X \leq y)=P\left(X_{i} \leq y_{i}\right)$ for all i.
Note that $F_{i}\left(y_{i}\right)=\lim _{n \rightarrow \infty} F\left(n, \ldots, n, y_{i}, n, \ldots, n\right)$
103 characteristic functions in \mathbb{R}^{d}
$\phi(t)=E x^{i t \cdot X}=E e^{i}\left(t_{1} X_{1}+\cdots+t_{d} X_{d}\right)$

104 Central Limit Theorem in \mathbb{R}^{d}

X_{1}, X_{2}, \ldots i.i.d random vectors with $E X_{i}=\mu \in \mathbb{R}^{d}$ with finite covariance $\Gamma_{i, j}=E\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)$,

$$
\frac{S_{n}-n \mu}{\sqrt{n}} \Rightarrow \mathcal{N}_{d}(0, \Gamma)
$$

where $\mathcal{N}_{d}(0, \Gamma)$ is the multivariate Gaussian with mean 0 and covariance Γ.

Chapter 4 - Martingales

4.1 Conditional Expectation

105 conditional expectation
If $E|X|<\infty$ then $E(X \mid \mathcal{F})$ is any random variable such that

$$
\text { (i) } E(X \mid \mathcal{F}) \in \mathcal{F} \quad \text { (ii) } \forall A \in \mathcal{F}, \int_{A} E(X \mid \mathcal{F}) d P=\int_{A} X d P
$$

This exists (by Radon-Nikodym Thm/derivatives) and is unique up to a.e.

106 major examples of conditional expectation

- Perfect information, $X \in \mathcal{F}$ then $E(X \mid \mathcal{F})=X$
- No information, X and \mathcal{F} are independent then $E(X \mid F)=E X$
- $\Omega_{1}, \Omega_{2}, \ldots$ disjoint partition of Ω then for $\mathcal{F}=\sigma\left(\Omega_{1}, \Omega_{2}, \ldots\right)$

$$
E(X \mid \mathcal{F})=\frac{E\left(X ; \Omega_{i}\right)}{P\left(\Omega_{i}\right)} \text { on } \Omega_{i}
$$

$107 \quad P(A \mid \mathcal{F}), P(A \mid B), E(X \mid Y)$
If A, B are events, \mathcal{F} is a σ-field, and X, Y random variables,

$$
P(A \mid \mathcal{F})=E\left(1_{A} \mid \mathcal{F}\right) \quad P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad E(X \mid Y)=E(X \mid \sigma(Y))
$$

108 Properties of $E(X \mid \mathcal{F})$
Where all conditional expectations are defined (i.e. $E|X|<\infty$ for $E(X \mid \mathcal{F})$

- $E(a X+Y \mid \mathcal{F})=a E(X \mid \mathcal{F})+E(Y \mid \mathcal{F})$ (regardless of independence)
- $X \leq Y$ implies $E(X \mid \mathcal{F}) \leq E(Y \mid \mathcal{F})$
- $X_{n} \geq 0$ and $X_{n} \uparrow X($ and $E|X|<\infty)$ then $E\left(X_{n} \mid \mathcal{F}\right) \uparrow E(X \mid \mathcal{F})$
- If $\mathcal{F} \subset \mathcal{G}$ then $E(E(X \mid \mathcal{F}) \mid \mathcal{G})=E(E(X \mid \mathcal{G}) \mid \mathcal{F})=E(X \mid \mathcal{F})$
- If $X \in \mathcal{F}($ and $E|X Y|, E|Y|<\infty)$ then $E(X Y \mid \mathcal{F})=X E(Y \mid \mathcal{F})$

109 Jensen's Inequality for Conditional Probability

φ convex, X random variable with $E|X|, E|\varphi(X)|<\infty$ (so that both cond. exp exist) then

$$
\varphi(E(X \mid \mathcal{F})) \leq E(\varphi(X) \mid \mathcal{F})
$$

110 regular conditional probabilities
$X:(\Omega, \mathcal{F}) \rightarrow(\Omega, \mathcal{F})$ the identity map, then $\mu: \Omega \times \Omega \rightarrow[0,1]$ is a regular conditional probability if

- for every $A \in \mathcal{F}, \omega \mapsto \mu(w, A)$ is a version of $P(A \mid \mathcal{F})=E\left(1_{A} \mid \mathcal{F}\right)$
- for every $\omega \in \Omega, A \mapsto \mu(w, A)$ is a probability measure

These reg. cond. prob. exist for $(\mathbb{R}, \mathcal{R})$ and other measure spaces that are measurably isomorphic to it (i.e. 'nice')
Motivation: If μ is a regular conditional probability, $E(g(X) \mid \mathcal{F})=\int g(x) \mu(w, d x)$.

4.2 Martingales, Almost Sure Convergence

111 filtration, and adapted to filtration

$\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \cdots \subseteq \mathcal{F}_{n} \subseteq \cdots$ an increasing sequence of σ-fields is a filtration
if X_{n} is a sequence of random variables with $X_{n} \in \mathcal{F}_{n}$ (i.e. X_{n} is \mathcal{F}_{n}-measurable) then X_{n} is adapted to the filtration F_{n}
112 martingale, submartingale, supermartingale
X_{n} is martingale w.r.t \mathcal{F}_{n} filtration if
(i) $E\left|X_{n}\right|<\infty$ for all n (so cond. exp. exist)
(ii) X_{n} adapted to $\mathcal{F}_{n}\left(\right.$ so $\left.X_{n} \in \mathcal{F}_{n}\right)$
(iii) $E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}\left[E\left(X_{n+1} \mid \mathcal{F}_{n}\right) \leq X_{n}\right.$ is supermartingale, $E\left(X_{n+1} \mid \mathcal{F}_{n}\right) \geq X_{n}$ is submartingale $]$

By induction, for any $n>m, E\left(X_{n} \mid \mathcal{F}_{m}\right)=X_{m}$
X is submartingale $\Longleftrightarrow-X$ is supermartingale

113 linear martingales

Take S_{0} a constant, and Y_{n} i.i.d random variables with mean 0 , then $X_{n}=S_{0}+Y_{1}+\cdots+Y_{n}$ is martingale with respect to $\mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$. (if mean ≤ 0 then supermartingale, and mean ≥ 0 gives submartingale).
This is also an example of a random walk!

114 functions of martingales

If φ is (increasing) convex function, and X_{n} is (sub)martingale, then $\varphi\left(X_{n}\right)$ is submartingale. (proof by Jensen's Inequality for Conditional Expectations)
Example: $\left|X_{n}\right|^{p}$ submartingale, $\left(X_{n}-a\right)^{+}$submartingale, X_{n} supermartingale then $\min \left(X_{n}, a\right)$ is supermartingale too

115 predictable sequence

H_{n} random variables such that $H_{n} \in \mathcal{F}_{n-1}$ (i.e. H_{n} only depends on information at time $n-1$)
If H_{n} is a betting scheme, and X_{n} is the martingale of money earned at time n betting a single unit each round, then

$$
(H \cdot X)_{n}=\sum_{m=1}^{n} H_{m}\left(X_{m}-X_{m-1}\right)
$$

is the earnings of H_{n} at time n.
Theorem: If X_{n} is a (sub/super)martingale, and H_{n} is a predictable sequence with $H_{n} \geq 0$ and each H_{n} bounded, then $(H \cdot X)_{n}$ is a (sub/super)martingale as well.

116 Classical Martingale Betting Strategy

"Double down on losses"

$$
H_{n}= \begin{cases}2 H_{n-1} & X_{n-1}-X_{n-2}=-1(\operatorname{loss} @ n-1) \\ 1 & X_{n-1}-X_{n-2}=1(\text { win @ } n-1)\end{cases}
$$

117 stopping times

N, a random variable, is a stopping time if $\{N=n\} \in \mathcal{F}_{n}$ for all n (i.e. the decision to stop at time n must be decidable with the information at time n)
Theorem: If X_{n} is a (sub/super)martingale, then $X_{N \wedge n}=X_{\min (N, n)}$ is a (sub/super)martingale.
118 Upcrossing Inequality
If X_{m} is a submartingale, and $a<b$ with U_{n} the number of upcrossings of X_{m} of (a, b), then

$$
(b-a) E U_{n} \leq E\left(X_{n}-a\right)^{+}-E\left(X_{0}-a\right)^{+}
$$

119 Martingale A.S. Convergence Theorem
If X_{n} is a submartingale and $\sup _{n} E X_{n}^{+}<\infty$ then X_{n} converges a.s. to some X with $E|X|<\infty$.

4.3 Examples

120 Bounded Increments Example

X_{n} martingale and $\left|X_{n+1}-X_{n}\right| \leq M<\infty$ for all n (i.e. has bounded increments) then if

$$
C=\left\{\lim _{n} X_{n}=C<\infty\right\} \quad D=\left\{\limsup _{n} X_{n}=\infty \text { and } \liminf _{n} X_{n}=-\infty\right\}
$$

then $P(C \cup D)=1$.

121 Doob's Decomposition

X_{n} a submartingale, then $X_{n}=M_{n}+A_{n}$ uniquely where M_{n} is a martingale and A_{n} is an increasing predictable sequence.
Construction: $A_{0}=0$ and $A_{n}-A_{n}-1=E\left(X_{n} \mid \mathcal{F}_{n-1}\right)-X_{n-1} \in \mathcal{F}_{n-1}$ and then $M_{n}=X_{n}-A_{n}$ and check this is martingale.

122 Polya's Urn

An urn has r red balls, and g green balls. Each time, pick a ball and add c balls of chosen color.
Let X_{n} be the fraction of green balls after n draws and \mathcal{F}_{n} is the information after n draws. Then X_{n} is martingale (because X_{n+1} independent of \mathcal{F}_{n} and has $E X_{n+1}=X_{n}$ by direct computation.

4.4 Doob's Inequality, Convergence in $L^{p}, p>1$

123 Inequality for expected values of X_{N}
If X_{n} is submartingale, N is a stopping time which is "bounded" meaning $P(N \geq k)=1$ for some k, then

$$
E X_{0} \leq E X_{N} \leq E X_{k}
$$

Pf Idea: $E X_{0}=E X_{N \wedge 0} \leq E X_{N \wedge k}=E X_{N}$
Then take $K_{n}=1_{N<n}$ predictable, so ($\left.K \cdot X\right)_{n}$ is submartingale and
$(K \cdot X)_{k}=E X_{k}-E X_{N \wedge k}=E X_{k}-E X_{N} \geq E(K \cdot X)_{0}=0$.
Common application is $N \wedge n$ which is bounded by n.

124 Doob's Inequality

X_{n} submartingale, $\lambda>0$,

$$
\lambda P\left(\max _{0 \leq m \leq n} X_{m} \geq \lambda\right) \leq E X_{n}^{+}
$$

Pf Idea: Take $N=\inf \left\{X_{m} \geq \lambda\right.$ or $\left.m=n\right\}$. Then $X_{N} \geq \lambda$ if some $X_{m} \geq \lambda$, and $P(N \leq n)=1$ so

$$
\lambda P\left(\max _{m} X_{m} \geq \lambda\right) \leq E X_{N} 1_{\max _{m} X_{m} \geq \lambda} \leq E X_{n} 1_{\max _{m} X_{m} \geq \lambda}
$$

and $E X_{n} 1_{A} \leq E X_{n} \leq E X_{n}^{+}$always.
$125 L^{p}$ maximal inequality
Idea: $\left(X_{m}^{+}\right)^{p}$ for $0 \leq m \leq n$ can be bounded in expectation above by $E\left(X_{n}^{+}\right)^{p}$ scaled by a constant depending only on p
Theorem: X_{n} submartingale and $1<p<\infty$,

$$
E\left(\max _{0 \leq m \leq n}\left(X_{m}^{+}\right)^{p}\right) \leq\left(\frac{p}{p-1}\right)^{p} E\left(X_{n}^{+}\right)^{p}
$$

Pf Idea: Take bounded version of variable, $X_{n} \wedge M$ which either matches $X_{n} \geq \lambda$ or trivially fails.
Express expectations in terms of integrals, apply Doob's Inequality and then perform some integral manipulations (Fubini's and regular integration) then apply Holder's Inequality.
$126 L^{p}$ convergence
Theorem X_{n} martingale, with $\sup E\left|X_{n}\right|^{p}<\infty$ for $p>1$, then $X_{n} \rightarrow X$ a.s. and in L^{p}.
Proof. Apply normal convergence to get a.s. to X. Then bound $\left|X_{n}-X\right|^{p}$ by sup $\left|X_{n}\right|^{p}$ using this a.s. conv, which is in L^{p} by the L^{p} maximal inequality.

4.6 Uniform Integrability, Convergence in L^{1}

127 Uniform integrable

A collection X_{n} is uniformly integrable if

$$
\lim _{M \rightarrow \infty}\left(\sup _{n} E\left(\left|X_{i}\right| ;\left|X_{i}\right|>M\right)\right)=0
$$

128 pre- L^{1} convergence theorem
If X_{n} s.t. $X_{n} \rightarrow X$ in P and $E\left|X_{n}\right|<\infty$ for all n then TFAE

1. X_{n} are U.I.
2. $X_{n} \rightarrow X$ converge in L^{1}
3. $E\left|X_{n}\right| \rightarrow E|X|<\infty$
$129 L^{1}$ convergence theorem
If X_{n} is a submartingale, TFAE:
4. X_{n} are U.I.
5. X_{n} converge in L^{1} and a.s.
6. X_{n} converge in L^{1}

4.7 Backwards Martingales

130 Backwards martingale
Backwards Martingales: X_{-n} indexed by $n=1,2,3, \ldots$ and adapted to the filtration \mathcal{F}_{-n}, (i.e.
$\left.\cdots \subseteq \mathcal{F}_{-2} \subseteq \mathcal{F}_{-1} \subseteq \mathcal{F}_{0}\right)$ such that $E\left(X_{-n+1} \mid \mathcal{F}_{-n}\right)=X_{-n}\left(\right.$ i.e. $\left.E\left(X_{0} \mid \mathcal{F}_{-1}\right)=X_{-1}\right)$
131 Convergence Theorem for Backwards Martingales
Backwards Convergence Theorem If X_{n} is a backwards martingale, it converges a.s. and in L^{1}.

4.8 Optional Stopping Theorems

132 Optional Stopping
$E X_{0} \leq E X_{N} \leq E X_{\infty}$

133 Exampes of Optional Stopping Theorems

1. Whenever usual integral convergence theorems hold for $E X_{N \wedge n}$.
2. If N is bounded a.s., that is $P(N \leq k)=1$ for some k. Then $E X_{0} \leq E X_{N} \leq E X_{k}$.
3. X_{n} U.I. then $E X_{0} \leq E X_{N} \leq E X_{\infty}$.
4. $E\left(\left|X_{n+1}-X_{n}\right| \mathcal{F}_{n}\right) \leq B<\infty$ a.s. and $E N<\infty$

134 Wald's Identity
Thm If X_{1}, X_{2}, \ldots are i.i.d. with $E X_{i}=0$ and $S_{n}=X_{1}+\cdots+X_{n}$ and N is a stopping time with $E N<\infty$ then $E S_{N}=\mu E N$.

Chapter 5-Markov Chains

5.1 Examples

135 Markov Chain
a memoryless stochastic process. That is a sequence of random variables X_{n} such that $P\left(X_{n} \in A \mid\right.$ $\left.X_{1}, \ldots, X_{n-1}\right)=P\left(X_{n} \in A \mid X_{n-1}\right)$.

136 transition probability

$p(x, y)=P\left(X_{1}=y \mid X_{0}=x\right)$
$p^{n}(x, y)=P\left(X_{n}=y \mid X_{0}=x\right)$
$p(x, A)=P\left(X_{1} \in A \mid X_{0}=x\right)$

5.2 Construction, Markov Properties

137 Markov Property

Let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$, then $P\left(X_{n} \in A \mid \mathcal{F}_{n-1}\right)=P\left(X_{n} \in A \mid X_{n-1}\right)$ for all n.
138 Strong Markov Property
Let N be a stopping time and define $\mathcal{F}_{N}=\left\{A: A \cap\{N=n\} \in \sigma\left(X_{1}, \ldots, X_{n}\right)\right\}$, then $P\left(X_{N} \in A \mid\right.$ $\left.\mathcal{F}_{N-1}\right)=P\left(X_{N} \in A \mid X_{N-1}\right)$.

5.3 Recurrence and Transience

139
 $$
\rho_{x y}, T_{y}^{k}
$$

T_{y}^{k} is the time for the k th return y (not including X_{0}). $T_{y}=T_{y}^{1}$ is for the first visit to y.
$\rho_{x y}=P_{x}\left(T_{y}<\infty\right)$.
140 recurrence
x is recurrent if $\rho_{x x}=1$ (that is starting at x a.s. returns to x in finite time.)
141 transience
x is transient if it is not recurrent, that is $\rho_{x x}<1$.

142 closed

a collection of states is closed if you can never ever escape! that is if $x \in C$ and $\rho_{x y}>0$ then $y \in C$ too.

143 irreducible
A collection of states is irreducible if all states are connected, that is $x, y \in C$ implies $\rho_{x y}>0$ for all pairs.

5.5 Stationary Measures

144 stationary measure
A stationary measure μ satisfies $\mu(y)=\sum_{x} \mu(x) p(x, y)$.
This also implies for any $n, \mu(y)=\sum_{x} \mu(x) p^{n}(x, y)$.

145 reversible measure
A measure is reversible if it satisfies the detailed balance condition $\mu(y) p(y, x)=\mu(x) p(x, y)$.
146 stationary distribution
A stationary distribution is a probability measure that is stationary, so satisfies $\mu(y)=\sum_{x} \mu(x) p(x, y)$ and $\sum_{y} \mu(y)=1$.
147 positive recurrent and null recurrent
x is positive recurrent if $E_{x} T_{x}<\infty$, if x is recurrent but not positive recurrent it is null recurrent.
148 Thm for Existence for Stationary Distribution
If p is irreducible then TFAE

- these exists one positive recurrent state
- all states are positive recurrent state
- there exists a (unique!) stationary measure

5.6 Asymptotic Behavior

149 period for a markov chain

Let $I_{x}=\left\{n: p^{n}(x, x)>0\right\}$, then $d_{x}=\operatorname{gcd}\left(I_{x}\right)$ is the period of x. These are unique on irreducible sets of states.
150 aperiodic
When the period for any state (all states when irreducible) is 1 .
151 Convergence Theorem for Markov Chains
If p is irreducible and aperiodic with a stationary measure π, then $p^{n} \rightarrow \pi$ as $n \rightarrow \infty$.

Probability Theory Quals Questions (- best questions -)

Chapter 1 - Measure Theory

1.1 Probability Spaces

1 Show that \mathcal{R}^{d}, the Borel sets on \mathbb{R}^{d}, is countably generated

countably generated: there exists a countable collection \mathcal{C} such that the σ-field can be expressed as $\sigma(\mathcal{C})$
Let $S \mathbb{Q}_{d}$ be the empty set and all sets of the form

$$
\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right] \times \cdots \times\left(a_{d}, b_{d}\right]
$$

for $-\infty \leq a_{i}<b_{i} \leq \infty$ and $a_{i}, b_{i} \in \mathbb{Q} \cup\{ \pm \infty\}$
Claim 1: $S \mathbb{Q}_{d}$ is countable
there are finitely many interval endpoints and countably many options for each, so this set is countable
Claim 2: $\sigma\left(S \mathbb{Q}_{d}\right)=\mathcal{R}^{d}$ (generates the Borel sets)
First, need to show $S \mathbb{Q}_{d} \subseteq \mathcal{R}^{d}$ (then $\left.\sigma\left(S \mathbb{Q}_{d}\right) \subseteq \sigma\left(\mathcal{R}^{d}\right)=\mathcal{R}^{d}\right)$.
Emptyset is in \mathcal{R}^{d}. Take $\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right] \times \cdots \times\left(a_{d}, b_{d}\right] \in S \mathbb{Q}_{d}$. Since σ-fields are closed under complements and countable union, they are closed under countable intersections.
Take $\left\{\left(a_{1}, b_{1}+1 / n\right) \times\left(a_{2}, b_{2}+1 / n\right) \times \cdots \times\left(a_{d}, b_{d}+1 / n\right)\right\}_{n \in \mathbb{N}}$ a countable collection in \mathcal{R}^{d}, the countable intersection yields the desired set.
Second, need to show that every open set in \mathbb{R}^{d} is in $\sigma\left(S \mathbb{Q}_{d}\right)$ (then $\mathcal{R}^{d}=\sigma($ opens $) \subseteq \sigma\left(\sigma\left(S \mathbb{Q}_{d}\right)\right)=$ $\left.\sigma\left(S \mathbb{Q}_{d}\right)\right)$, suffices to take basic opens of the form $\left(a_{1}, b_{1}\right) \times \cdots\left(a_{d}, b_{d}\right)\left(-\infty \leq a_{i}<b_{i} \leq \infty\right)$
Take $\left(a_{1}, b_{1}\right) \times \cdots\left(a_{d}, b_{d}\right)$ a basic open in \mathbb{R}^{d}. For each a_{i}, b_{i} there is a sequence of rationals $c_{i, n}, d_{i, n}$ such that $c_{i, n} \downarrow a_{i}$ and $d_{i, n} \uparrow b_{i}$.
Take the countable collection $\left\{\left(c_{1, n}, d_{1, n}\right] \times \cdots \times\left(c_{d, n}, d_{d, n}\right]\right\}_{n \in \mathbb{N}}$. Each set in the collection is in $S \mathbb{Q}_{d}$ so their countable union is in $\sigma\left(S \mathbb{Q}_{d}\right)$ and their union gives the basic open we started with.
2 How do σ-fields, semialgebras, and algebras relate? What are examples/non-examples of each?

SEMIALGEBRAS \supsetneq ALGEBRAS $\supsetneq \sigma$-ALGEBRAS

σ-ALGEBRA \Longrightarrow ALGEBRA:

σ-algebra: closed under complements and countable unions
algebra: (i) closed under complements and (ii) finite unions
(i) complement closure property is the same
(ii) finite unions are countable

ALGEBRA \Longrightarrow SEMIALGEBRA:

algebra: closed under complements and finite unions
semi-algebra: (i) closed under finite intersections and (ii) complements are finite disjoint unions of sets in the collection
(i) finite unions and complements provides finite intersections
(ii) if complement is in the collection, it also a finite union of disjoint sets (just 1)

Example: Semialgebra not an algebra
$\mathcal{S}_{d}=\{\emptyset\} \cup\left\{\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right] \times \cdots \times\left(a_{d}, b_{d}\right]:-\infty \leq a_{i}<b_{i} \leq \infty\right\}$
finite intersections contract endpoints (possibly with empty intersection) but preserves $(\cdot, \cdot]$ complements - the complement in each dimension will be $\emptyset,\left(-\infty, a_{i}\right] \cup\left(b_{i}, \infty\right]$ which is a finite disjoint union of sets in that dimension, then taking products over all dimension yields the same overall.

Example: Algebra not an σ-algebra
$\Omega=\mathbb{Z}$ and \mathcal{A} is the collection of integer sets that are finite or co-finite ($|A|$ or $\left|A^{C}\right|$ is finite).
closed under complements by construction. Finite unions are also closed, if $A, B \in \mathcal{A}$ and $|A|,|B|<\infty$ then $|A \cup B|<\infty$, if $\left|A^{C}\right|<\infty$ then $\left|(A \cup B)^{C}\right|=\left|A^{C} \cap B^{C}\right| \leq\left|A^{C}\right|<\infty$ (similarly for $\left|B^{C}\right|<\infty$.
However not closed under countably infinite unions, take $A_{n}=\{2 n\}$ then $\cup_{n} A_{n}=2 \mathbb{Z}$ which is neither finite nor co-finite.

3 How do 'measures' extend from semi-algebras to algebras to σ-algebras?

Given \mathcal{S} semi-algebra and a set function μ on \mathcal{S} with $\mu(\emptyset)=0$, we can extend to a measure on the algebra \bar{S} by

$$
\mu\left(\sqcup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)
$$

Extending from semi-algebra to σ-algebra:

If μ is a set function on \mathcal{S}, a semi-algebra, with $\mu(\emptyset)=0$ and additive on finite disjoint unions and sub-additive on infinite unions then μ extends uniquely to $\sigma(\mathcal{S})$.
4 Let $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \cdots$ be σ-algebras, what can we say about $\cup_{i} \mathcal{F}_{i}$?
This is an algebra but not necessarily a σ-algebra
$\cup_{i} \mathcal{F}_{i}$ is an algebra:
closed under complements - if $U \in \cup_{i} \mathcal{F}_{i}$ then $U \in \mathcal{F}_{i}$ for some i, so $U^{C} \in \mathcal{F}_{i} \subseteq \cup_{i} \mathcal{F}_{i}$.
closed under finite intersection/union - given $U, V \in \cup_{i} \mathcal{F}_{i}$ then $U \in \mathcal{F}_{i}$ and $V \in \mathcal{F}_{j}$ for some i, j. Let $n=\max \{i, j\}$ then $U, V \in \mathcal{F}_{n}$ and here we have closed finite intersection/union so $U \cup V, U \cap V \in$ $\mathcal{F}_{n} \subseteq \cup_{i} \mathcal{F}_{i}$
$\cup_{i} \mathcal{F}_{i}$ may not be a σ-algebra:
What goes wrong: could have a sequence $U_{1} \in \mathcal{F}_{1}, U_{2} \in \mathcal{F}_{2}, \ldots, U_{n} \in \mathcal{F}_{n}, \ldots$ where the union of U_{i} is not contained in any one \mathcal{F}_{i}.
Example (trying to create a union that gives the algebra \mathbb{Z} with finite/co-finite sets):
Let \mathcal{F}_{n} be the σ-algebra generated by the singletons $\{0\},\{ \pm 1\}, \ldots,\{ \pm n\}$ in \mathbb{Z} (so complements are in \mathbb{Z}). The union of all of these gives the desired algebra because a set that is finite is contained in some interval $[-M, M]$ in which case it is in \mathcal{F}_{M}, so all finite or co-finite sets in \mathbb{Z} lie in one of these σ-algebras.

1.2 Distributions

5 Suppose X and Y are random variables on (Ω, \mathcal{F}, P) and let $A \in \mathcal{F}$. If $Z(\omega)=X(\omega)$ for $\omega \in A$ and $Z(\omega)=Y(\omega)$ for $\omega \notin A$ then Z is a random variable.
$Z^{-1}(B)=X^{-1}(B) \cap A \cup Y^{-1}(B) \cap A^{C} \in \mathcal{F}$

6 Show that a distribution function has at most countably many discontinuities

If a distribution function has a discontinuity at x_{0} then it is a left discontinuity (F is right continuous) so $F\left(x_{0}\right)>F\left(x_{0}-\right)=\lim _{y \uparrow x_{0}} F(y)$ and so $P\left(X=x_{0}\right)=\varepsilon_{0}>0$.

Since F is a distribution function, $\lim _{x \rightarrow \infty} F(x)=1$, which importantly is bounded. At the same time, for each discontinuity jump, we know that F goes up by $\varepsilon>0$. By the below claim, if there were uncountably many discontinuities then F would be unbounded in the limit, a contradiction.
Claim: The sum of uncountably many positive terms is unbounded.
Let $\sum_{\alpha} \varepsilon_{\alpha}$ be an uncountable sum of positive terms. Define $B_{n}=\left\{\varepsilon_{\alpha}: \varepsilon \geq 1 / n\right\}$. If $\left|B_{n}\right|$ is infinite for any n then the sum is bounded below by $\sum_{\varepsilon \in B_{n}} 1 / n$ which is unbounded. Since there are countably many B_{n}, an uncountable number of terms cannot be partitioned into countably many finite chunks, so the sum must be unbounded.

7 What properties characterize distribution functions?
(i) F is nondecreasing
(ii) $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$
(iii) F is right continuous

Theorem Any real function satisfying these is the distribution function of some random variable. Define $\Omega=(0,1)$ and \mathcal{F} the Borel sets, with P Lebesgue measure. For $\omega \in(0,1)$,

$$
X(\omega)=\sup \{y: F(y)<\omega\}
$$

X here is a sort of inverse to F, sometimes denoted F^{-1}.

8 Give an example of a density function whose distribution function has no closed form.

Standard Normal Distribution
Given by the density function $f(x)=(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right)$
has no closed form but has upper and lower bounds.

9 Give an example of a distribution function with dense discontinuities.

Enumerate the rationals by q_{1}, q_{2}, \ldots define the indicator functions by $1_{q}=1_{[q, \infty)}$ (i.e. indicates whether past a given rational).
Choose $\alpha_{i}>0$ such that $\sum_{i} \alpha_{i}=1$ and define

$$
F(x)=\sum_{i=1}^{\infty} \alpha_{i} 1_{q_{i}}
$$

Has dense discontinuities because \mathbb{Q} is dense in the reals, but has only countably many discontinuities.
10 Given a random variable with density function f, derive the density function for X^{2}.

$$
\begin{aligned}
F_{X^{2}}(x) & =P(X \leq x)=P(X \in[-\sqrt{x}, \sqrt{x}])=P(X \leq \sqrt{x})-P(X<-\sqrt{x}) \\
& =\int_{-\infty}^{\sqrt{x}} f(y) d y-\int_{-\infty}^{-\sqrt{x}} f(y) d y=\int_{-\sqrt{x}}^{\sqrt{x}} f(y) d y
\end{aligned}
$$

Differentiating,

$$
f_{X^{2}}(x)=\frac{d}{d x} F_{X^{2}}(x)=\frac{d}{d x} \int_{-\sqrt{x}}^{\sqrt{x}} f(y) d y=f(\sqrt{x}) \frac{1}{2} \sqrt{x}^{-1}+f(-\sqrt{x}) \frac{1}{2} \sqrt{x}^{-1}=\frac{1}{2} \sqrt{x}^{-1}(f(\sqrt{x})+f(-\sqrt{x}))
$$

1.3 Random Variables

11 What is the extended real line? Why do we extend random variables to it?

The extended real line, \mathbb{R}^{*}, is obtained by adding $\pm \infty$ to \mathbb{R}. These endpoints are also added to all intervals with no lower/upper bound so $[-\infty, a)$ and similar intervals now generate the Borels on \mathbb{R}^{*}. In cases were we look at inf or sup of random variables, we may end up with a 'random variable' that takes on values of $\pm \infty$ which lie outside the usual real line, so we extend to make sense of slightly more general random variables.

12 If X and Y are two random variables, show that $X+Y$ is one too.

Suppose $X, Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{R})$. Want to show on just the intervals $(-\infty, a)$ that

$$
(X+Y)^{-1}((-\infty, a))=\{X+Y<a\} \in \mathcal{F} .
$$

Need to split conditions to get separate $X<\bullet$ and $Y<\bullet$ and also enumerate over something countable.

$$
\{X+Y<a\}=\bigcup_{q \in \mathbb{Q}}\{X<a-q\} \cap\{Y<q\}
$$

all pieces are in \mathcal{F} and combined through countable intersections/unions so this is a measurable set.
13 What is the smallest σ-field that makes all continuous functions $\mathbb{R}^{d} \rightarrow \mathbb{R}$ measurable?

Using the Borels for \mathbb{R} the smallest σ-field will be the Borels \mathcal{R}^{d}.
Take the projection map onto the k th coordinate $f_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}$. For this to be measurable, $f_{k}^{-1}(a, b)$ must be measurable. However

$$
f_{k}^{-1}(a, b)=\mathbb{R}^{d-1} \times(a, b)
$$

and since this holds for all k and (a, b) and these are all measurable, any σ-field containing them contains arbitrary intersections to get $\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{d}, b_{d}\right)$.
These then generate all opens and all Borels. So any σ-field making all continuous functions measurable must contain the Borels, and since this is also enough we see that this is the smallest σ-field.

1.4 Integration

14 What are integrable functions? How do we develop integration of them?
First defining integrals for simple functions in the natural way, then extending to bounded functions by approximating them with simple functions above/below.
Then using bounded functions to approximate non-negative functions. Finally splitting general (integrable) functions into two non-negative pieces and combining in the natural way.

1.5 Properties of the Integral

15 Show that $\|f\|_{p} \rightarrow\|f\|_{\infty}$ when μ is a probability measure. What if μ is only finite?
Show inequality in both directions.
One side show $\|f\|_{p}$ bounded above by all M defining the inf and so the sequence is bounded.

On the other side, if there is a gap pick some value N less than $\|f\|_{\infty}$ and take limit to show that $\left||f|_{p}>N\right.$ for some p
The above proof uses the fact that $\lim _{p \rightarrow \infty} \mu(E)^{1 / p} \rightarrow 1$, if μ is just finite and not a probability measure, this will still hold even when $\mu(E)>1$.
16 State Hölder's Inequality. What happens when $p=1$ and $q=\infty$?
Hölder's Inequality: If $p, q \in(1, \infty)$ and $1 / p+1 / q=1$, then for functions f, g,

$$
\int|f g| d \mu \leq\left(\int|f|^{p} d \mu\right)^{p}\left(\int|g|^{q} d \mu\right)^{q}=\|f\|_{p}\|g\|_{q}
$$

Extension: This continues to hold when $p=1$ and $q=\infty$ where we define

$$
\|f\|_{\infty}=\inf \{M: \mu(\{x:|f(x)|>M\})=0\}
$$

Proof Sketch:

Pick M that defines inf and show inequalities, then take inf
17 When does $\int \sum_{n} f_{n} d \mu=\sum_{n} \int f_{n} d \mu$?
Monotone Convergence: When $f_{n} \geq 0$ and $f_{n} \uparrow f$ then $\int f_{n} d \mu \uparrow \int f d \mu$
So if $g_{m} \geq 0$ and $f_{n}=\sum_{m=0}^{n} g_{m}$ then monotone convergence implies $\sum_{m} \int g_{m} d \mu=\int \sum_{m} g_{m} d \mu$.
Dominated Convergence: If $f_{n} \rightarrow f$ (a.e.) and $\left|f_{n}\right| \leq g$ for integrable g, then $\int f_{n} d \mu \rightarrow \int f d \mu$.
So if $\sum_{n} \int\left|f_{n}\right| d \mu<\infty$ then $F_{\infty}=\sum_{n}\left|f_{n}\right|$ is integrable (using Monotone convergence as above to switch sums/integral and by assumption). And $F_{n}=\sum_{i=1}^{n} f_{i}$ satisfies $\left|F_{n}\right| \leq F_{\infty}$ so $\int F_{n} \uparrow \sum_{n} \int f_{n}=$ $\int \sum_{n} f_{n}$ (first switching finite sums with integrals and then taking the limit)

1.6 Expected Value

18 Let $f \geq 0$, how can we approximate f from below with f_{n} simple functions?
$f_{n}(x)=\min \left\{\left(\left[2^{n} f(x)\right] / 2^{n}\right), n\right\}$
Splits $[k, k+1]$ into 2^{n} pieces and flattens f in these sections, when f goes above n the function flattens out to n (this gives finitely many regions for values, hence a simple function) but at $n \rightarrow \infty f_{n} \uparrow f$.

1.7 Product Measures, Fubini's Theorem

19 State Fubini's Theorem. What if instead we know that $\int_{X} \int_{Y}|f(x, y)| d \mu_{2} d \mu_{1}<\infty$, what can we conclude?

Fubini's gives conditions for switching multiple integrals using product spaces
Fubini's Theorem: Let μ_{1}, μ_{2} be σ-finite with $\mu=\mu_{1} \times \mu_{2}$. If $f \geq 0$ or $\int|f| d \mu<\infty$ then

$$
\int_{X} \int_{Y} f d \mu_{2} d \mu_{1}=\int_{X \times Y} f d \mu=\int_{Y} \int_{X} f d \mu_{1} d \mu_{2}
$$

If instead we have $\int_{X} \int_{Y}|f(x, y)| d \mu_{2} d \mu_{1}<\infty$, then taking $F=|f|$ we have that $F \geq 0$, so we can apply Fubini's to $|f|$ to get $\int_{X \times Y}|f| d \mu=\int_{X} \int_{Y}|f(x, y)| d \mu_{2} d \mu_{1}<\infty$. Now that $\int|f| d \mu<\infty$ we can apply Fubini's to the original function f.

20 State Fubini's Theorem. What happens if we drop each of the conditions?
Fubini's gives conditions for switching multiple integrals using product spaces
Fubini's Theorem: Let μ_{1}, μ_{2} be σ-finite with $\mu=\mu_{1} \times \mu_{2}$. If $f \geq 0$ or $\int|f| d \mu<\infty$ then

$$
\int_{X} \int_{Y} f d \mu_{2} d \mu_{1}=\int_{X \times Y} f d \mu=\int_{Y} \int_{X} f d \mu_{1} d \mu_{2}
$$

Dropped $f \geq 0$: If f is not non-negative, then Fubini's Theorem can fail. Consider the function on $\mathbb{N} \times \mathbb{N}$ that takes on 1 on the main diagonal and -1 below the main diagonal

$$
\left[\begin{array}{ccccc}
\vdots & \vdots & \vdots & \vdots & \\
0 & 0 & 0 & 1 & \ldots \\
0 & 0 & 1 & -1 & \cdots \\
0 & 1 & -1 & 0 & \cdots \\
1 & -1 & 0 & 0 & \cdots
\end{array}\right]
$$

then summing with respect to the counting measure row first gives 0 and columns first gives 1 so the conclusion fails.
Dropped $\int|f| d \mu<\infty$: If f is non-negative and does not meet this condition, then f is not actually integrable in the product measure μ, hence the proof for for Fubini's Theorem falls apart, using the same example above where the $\int|f| d \mu$ diverges to ∞ also.
Dropped μ_{i} is σ-finite: Take $X=Y=(0,1)$ but μ_{1} is Lebesgue (Borel sets) and μ_{2} is counting measure (all subsets). Then $f(x, x)=1$ otherwise $f=0$ gives different integrals (point mass at $x=y$ for counting measure gives a 1 if integrated first, otherwise is measure 0 so integrates to 0).
21 Use Fubini's Theorem to derive an expression for $E|X|$.
Rewrite

$$
E|X|=\int_{\Omega}|X| d P=\int_{\Omega} \int_{0}^{|X|} x d x d P=\int_{\Omega} \int_{0}^{\infty} 1_{|X|>x} d x d P
$$

Since $1_{|X|>x} \geq 0$, we can apply Fubini's to switch the order of integration,

$$
E|X|=\int_{\Omega} \int_{0}^{\infty} 1_{|X|>x} d x d P=\int_{0}^{\infty} \int_{\Omega} 1_{|X|>x} d P d x=\int_{0}^{\infty} P(|X|>x) d x
$$

Chapter 2 - Laws of Large Numbers

2.1 Independence

22 State Dynkin's $\pi-\lambda$ Theorem. Why is it significant?
$\pi-\lambda$ Theorem: If \mathcal{P} is a π-system and \mathcal{L} is a λ-system with $\mathcal{P} \subseteq \mathcal{L}$ then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

Supporting Definitions:

π-system - closed under intersection
λ-system - $\Omega \in \mathcal{L}$, countable unions contained, and set subtraction contained ($A \subseteq B \Rightarrow B \cap A^{C} \in \mathcal{L}$)
Significance: This theorem allows us to lift properties from a generating set (that is a π-system) to the σ-algebra it generates.

Example: Independence

Since independence can often be formulated as independence of σ-algebras, this allows us to check only a π-system that generates instead of the entire σ-algebra.

Example: agreement of measures

If μ_{1}, μ_{2} agree on a π-system they also agree on the σ-field generated by it ($\mathcal{L}=\left\{A: \mu_{1}(A)=\mu_{2}(A)\right\}$)
23 Give an example of four random variables where any three are independent but all four are not.

Let $X_{1}, X_{2}, X_{3}, X_{4}$ be independent random variables in $\{-1,1\}$ with $P\left(X_{i}= \pm 1\right)=1 / 2$ for all i.
Let $Y_{1}=X_{1} X_{2}, Y_{2}=X_{3} X_{4}, Y_{3}=X_{1} X_{3}$, and $Y_{4}=X_{2} X_{4}$
$P\left(Y_{i}=n\right)=1 / 2$ for all i and $n= \pm 1$.
three Y_{i} s are independent
If we specify $3 Y_{i}$'s we can write out $3 X_{i}$ s in terms of a single one, so the probability is $1 / 8$ (two outcomes for independent with odds of $1 / 16$ for alignment each) which satisfies independence.
four $Y_{i} \mathrm{~s}$ are not independent
However $Y_{1} Y_{2}=Y_{3} Y_{4}$ so $Y_{1}=Y_{2}=1$ and $Y_{3}=1$ but $Y_{4}=-1$ can never happen, so it has probability 0 but the product of independent probabilities is $1 / 16$.
24 If two collections of sets are independent, are their generated σ-fields also independent? When can we ensure that they are?
Not true for all collections of sets.
Take $\Omega=\{1,2,3,4\}$ and $P(\{n\})=1 / 4$ for all $n \in \Omega$.
$\mathcal{A}_{1}=\{\{1,2\},\{1,3\}\}$ and $\mathcal{A}_{2}=\{\{1,4\}\}$
These are independent as collections of sets

$$
P(\{1, x\} \cap\{1,4\})=P(\{1\})=1 / 4=(1 / 2)(1 / 2)=P(\{1, x\}) P(\{1,4\})
$$

But $\{1,2,3\} \in \sigma\left(\mathcal{A}_{1}\right)$ and

$$
P(\{1,2,3\} \cap\{1,4\})=P(\{1\})=1 / 4 \neq(3 / 4)(1 / 2)=P(\{1,2,3\}) P(\{1,4\})
$$

so their σ-algebras are not independent.
If we restrict to the condition that the collections be π-systems, that is closed under intersection, then independence is preserved. (here \mathcal{A}_{1} is not a π-system)

25 Show that the sum of two independent Poisson distributions is again Poisson.

Well Poisson means $P(X=k)=e^{-\lambda} \lambda^{k} / k!$ and $P(Y=k)=e^{-\mu} \mu^{k} / k!$ when $k=0,1,2, \ldots$

$$
\begin{aligned}
P(X+Y=n) & =\sum_{m} P(X=m) P(Y=n-m)=\sum_{0 \leq m \leq n} \frac{e^{-\lambda} \lambda^{m}}{m!} \frac{e^{-\mu} \mu^{n-m}}{(n-m)!} \\
& =e^{-(\lambda+\mu)} \frac{1}{n!} \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \lambda^{m} \mu^{n-m}=e^{-(\lambda+\mu)}(\lambda+\mu)^{n} / n!
\end{aligned}
$$

which is a Poisson distribution with parameter $\lambda+\mu$.

26 Given distribution functions F_{1}, \ldots, F_{n}, how can you construct independent random variables with these distribution functions?

Since these are distribution functions, construct a measure $\mu_{i}((a, b])=F_{i}(b)-F_{i}(a)$ on \mathbb{R}. And extend this to the product $P=\mu_{1} \times \mu_{n}$.

Then take X_{i} to be projection from \mathbb{R}^{n} onto \mathbb{R} by the i th coordinate. Then

$$
P\left(X_{i} \leq x\right)=\mu_{i}((-\infty, x]) \prod_{i \neq j} \mu_{j}(\mathbb{R})=F_{i}(x)
$$

and independence follows by choice of P.

2.2 Weak Laws of Large Numbers

27 State different types of convergences, how do they compare? Give distinguishing examples for each.
converges almost surely (almost everywhere): $\mu\left(\left\{x: f_{n}(x) \neq f(x)\right\}\right) \rightarrow 0$
converges in $L^{p}: E\left|f_{n}-f\right|^{p} \rightarrow 0$
converges in probability for all $\varepsilon>0, P\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\varepsilon\right\}\right) \rightarrow 0$ (equivalent to $\geq \varepsilon$)
convergences almost surely (almost everywhere) \Longrightarrow convergence in probability
L^{p} convergence \Longrightarrow convergence in probability
Example Ideas:

- for L^{p} not converging, get smaller intervals but weight higher and higher
- for a.e. not converging, make sure to shift intervals around to always return to the points again

Example: convergences in probability and L^{p} but not a.e.
Take shifting and shrinking subsets of $[0,1]$ (e.g. $[0,1],[0,1 / 2],[1 / 2,1],[0,1 / 4],[1 / 4,1 / 2]$, etc) and let $f_{n}=\mathbb{1}_{A_{n}}$. Then the regions where f_{n} and 0 differs shrinks in measure to 0 so $f_{n} \rightarrow 0$ in measure, but not a.e. because each point in $[0,1]$ differs from 0 for arbitrarily high n.
Converges in L^{p} because $E\left|f_{n}\right|^{p}=E \mathbb{1}_{A_{n}}=1 / 2^{n} \rightarrow 0$ for all p.
Example: convergences in probability but not in L^{p}
Take the above example but weight each f_{n} by $\mu\left(A_{n}\right)^{-1}$ so that $E\left|f_{n}\right|^{p}=E \mu\left(A_{n}\right)^{-p} \mathbb{1}_{A_{n}}=\mu\left(A_{n}\right)^{1-p}$ which does not converge to 0 as $n \rightarrow \infty\left(\mu\left(A_{n}\right) \rightarrow 0\right)$ for any $p \geq 1$
Example: convergences a.e. but not in L^{p}
$f_{n}=n \mathbb{1}_{[0,1 / n]}$ converges a.e. to 0 but not in L^{p} because $E\left|f_{n}\right|^{p}=\int n^{p} \mathbb{1}_{[0,1 / n]}=n^{p-1}$
which does not go to 0 when $p \geq 1$
Example: Not converging in all 3
$f_{n}=(-1)^{n}$ on $[0,1]$. Then for any function f, if $P\left(\left\{x:\left|f_{n}-f\right|>1 / 2\right\}\right) \rightarrow 0$ then it must be below 1 at some point, so for N even, $f \in[1 / 2,3 / 2]$ but then for $f_{N+1}\left|f_{N+1}-f\right| \geq 1 / 2$ on then entire interval, so no convergence. Can't converge in L^{p} or a.s. since those imply in probability.
28 What is the Weak Law of Large Numbers? Sketch a proof. What if we don't have finite variance?

Weak Law of Large Numbers: Let X_{1}, X_{2}, \ldots be i.i.d with finite variance (can weaken to $E\left|X_{i}\right|<$ $\infty)$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ and $\mu=E X_{1}$. Then $S_{n} / n \rightarrow \mu$ converges in probability.
Proof: (assuming finite variance)
Let $\operatorname{var}\left(X_{i}\right)=\sigma^{2}$, then because i.i.d., $\operatorname{var}\left(S_{n} / n\right)=\frac{1}{n^{2}} \operatorname{var}\left(S_{n}\right)=\frac{1}{n} \sigma^{2}$. (and $\left.E\left(S_{n}\right)=n \mu\right)$
Chebyshev's Inequality:

$$
\begin{aligned}
& \varphi(X)=X^{2}=|X|^{2} \text { and } A=\left\{x:\left|S_{N} / n-\mu\right|>\varepsilon\right\}=\left\{x:\left|S_{N} / n-\mu\right|^{2}>\varepsilon^{2}\right\} . \\
& \quad \inf _{A} \varphi\left(S_{n} / n-\mu\right) \cdot P(A) \leq E \varphi\left(S_{n} / n-\mu\right)=E\left(S_{n} / n-\mu\right)^{2}=\operatorname{var}\left(S_{n} / n\right)=\sigma^{2} / n
\end{aligned}
$$

so then

$$
P(A)=P\left(\left\{x:\left|S_{N} / n-\mu\right|>\varepsilon\right\}\right) \leq \sigma^{2} / n \varepsilon^{2} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

so $S_{n} / n \rightarrow \mu$ in probability.

Extension without finite variance

Can get the same result assuming only $E\left|X_{i}\right|<\infty$ (instead of $E X_{i}^{2}<\infty$), the proof uses truncation and version of the weak law for triangular arrays.

2.3 Borel-Cantelli Lemmas

29 What are the Borel-Cantelli Lemmas? How do they relate?

Borel-Cantelli Lemma: If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$ then
$P\left(\left\{x: x \in A_{n}\right.\right.$ infinitely often $\left.\}\right)=P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=P\left(\lim _{n \rightarrow \infty} \cup_{m=n}^{\infty} A_{m}\right)=P\left(A_{n}\right.$ infinitely often $)=0$
Second Borel-Cantelli Lemma: If A_{n} are independent and $\sum P\left(A_{n}\right)=\infty$ then

$$
P\left(\left\{x: x \in A_{n} \text { infinitely often }\right\}\right)=P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=P\left(\lim _{n \rightarrow \infty} \cup_{m=n}^{\infty} A_{m}\right)=P\left(A_{n} \text { infinitely often }\right)=1
$$

The second Borel-Cantelli Lemma is a partial converse ($\neg p+r \Longrightarrow \neg q)$ assuming also independence.
30 What is the second Borel-Cantelli Lemma? What happens if we remove the independence condition?
Second Borel-Cantelli Lemma: If A_{n} are independent and $\sum P\left(A_{n}\right)=\infty$ then
$P\left(\left\{x: x \in A_{n}\right.\right.$ infinitely often $\left.\}\right)=P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=P\left(\lim _{n \rightarrow \infty} \cup_{m=n}^{\infty} A_{m}\right)=P\left(A_{n}\right.$ infinitely often $)=1$
Fails if not Independent: $A_{n}=(0,1 / n)$ so $a_{n} \rightarrow 0$ then $\limsup _{n} A_{n}=\emptyset$ but $\sum P\left(A_{n}\right)=\sum a_{n}=$ $\sum 1 / n=\infty$. These events are not independent because $P\left(A_{n} \cap A_{m}\right)=P\left(A_{m}\right) \neq P\left(A_{n}\right) P\left(A_{m}\right)$ where $m>n$.

31 Assume $X_{k} \rightarrow X$ in probability and g is a continuous function. Is it true that $g\left(X_{k}\right) \rightarrow g(X)$?
Yes, in probability at least.
$X_{k} \rightarrow X$ in probability is equivalent to every subsequence has a subsequence that converges a.s., so $g\left(X_{m_{k}}\right) \rightarrow g(X)$. This means that this holds for $g\left(X_{n}\right)$ on these subsequences. Then using the equivalence again we have $g\left(X_{n}\right) \rightarrow g(X)$ in probability.
What about $g\left(X_{n}\right) \rightarrow g(X)$ a.s.? Well not always, for example if $g(y)=y$ then if X_{k} does not converge a.s. then $g\left(X_{n}\right)=X_{n}$ does not converge a.s. either.

32 Use the Borel-Cantelli Lemmas to construct a sequence of random variables that converges in probability but not almost surely.
Try indicator functions converging to 0 , so take supports A_{n} with measure $1 / n$. Could take these rotating across interval $(0,1)$.
To apply Borel-Cantelli, we want these to be independent to have $P\left(A_{n}\right.$ i.o. $)=1$. How to construct A_{n} with measure $1 / n$ and independent?
Records! Take X_{1}, X_{2}, \ldots i.i.d. and let A_{n} be the collection where X_{n} is larger than X_{1}, \ldots, X_{n-1}. These have measure $1 / n$ and are independent. Intuitively, because X_{n} needs to be larger than all preceding ones, regardless of the order of the preceding X_{i}, so A_{k} independent from A_{n}. More rigorously,
take an ordering, this defines a permutation, by symmetry these are uniformly distributed, so all are equally likely.

2.4 Strong Law of Large Numbers

33 State the Strong Law of Large Numbers. Sketch a proof (you may assume $E X_{i}^{4}<\infty$). Can we weaken the assumptions? What happens if $E\left|X_{i}\right|=\infty$?
SLLN: Let X_{1}, X_{2}, \ldots be i.i.d. with $E X_{i}=\mu$ and $E X_{i}^{4}<\infty$. Then

$$
\frac{S_{n}}{n}=\frac{X_{1}+\cdots X_{n}}{n} \xrightarrow{\text { a.s. }} \mu
$$

Proof (with finite 4th moment)

1. Assume $\mu=0$ and bound $E S_{n}^{4}$ by n^{2}
2. Use Chebyshev's to bound $P\left(\left|S_{n}\right|>n \varepsilon\right)$
3. Apply Borel-Cantelli to get $P\left(\left|S_{n}\right|>n \varepsilon\right.$ i.o. $)=0$, meaning that $S_{n} / n \rightarrow \mu$

Extensions/Generalizations:

1. Can weaken $E X_{i}^{4}<\infty$ to just $E\left|X_{i}\right|<\infty$.
2. Can also weaken i.i.d. to pairwise independent and identically distributed.
3. Can actually extend to anywhere $E X_{i}$ exists, that is when $E X_{i}^{+}=\infty$ and $E X_{i}^{-}<\infty$ and i.i.d. (so $\left.E X_{i}=\infty\right)$ the result holds too.
Proof Ideas: Truncate X_{i} by $Y_{i}=X_{i} 1_{\left|X_{i}\right| \leq i}$ and show the result for the Y_{i} 's. Do more clever bounding of the variances and then apply Chebyshev to bound difference from mean in terms of that variance.
What if $E\left|X_{i}\right|=\infty$?
SLLN fails in this case and the S_{n} / n does not converge to a finite value a.e.

$$
\infty=E\left|X_{i}\right|=\int_{0}^{\infty} P\left(\left|X_{1}\right|>x\right) d x \leq \sum_{0}^{\infty} P\left(\left|X_{1}\right|>n\right)
$$

so Second Borel Cantelli $\Longrightarrow P\left(\left|X_{n}\right|>n\right.$ i.o. $)=1$
take $C=\left\{\omega: \lim S_{n} / n\right.$ exists $\}$ and intersect with $\left|X_{n}\right|>n$ i.o. to show that $P(C)=0$.
34 Let X_{1}, X_{2}, \ldots be i.i.d and non-negative with $E X_{i}=\infty$. What can we say about S_{n} / n ?

Well the strong law of large numbers also holds here, so $S_{n} / n \rightarrow \infty$ a.s.
Can you prove it?
The method uses truncation, so let B be some bound and define $Y_{n}=X_{n} 1_{|X|<B}$.
Then $T_{n}=Y_{1}+\cdots Y_{n}$, and because $Y_{n} \leq X_{n}, T_{n} \leq S_{n}$.
Claim, $E Y_{i} \rightarrow E X_{i}=\infty$. This follows because Y_{i} are monotonic increasing to X_{i} so monotone convergence theorem applies.
Then strong law of large numbers holds for Y_{n} and T_{n} / n approaches the expected value, $E Y_{n}$, a.s. but as $M \rightarrow \infty$ that expected value goes to ∞ so we have a lower bound for S_{n} / n that grows to ∞ a.s. hence $S_{n} / n \rightarrow \infty$ a.s. too.

2.5 Convergence of Random Series

35 Consider a sequence of i.i.d variables X_{1}, X_{2}, \ldots. How can we express $X_{n} \rightarrow 0$ a.s. in terms of a convergence of something in probability?

Let $M_{n}=\sup _{i>n}\left|X_{i}\right|$. Then $M_{n} \rightarrow 0$ in probability if and only if $X_{n} \rightarrow 0$ a.s.
Proof
\Rightarrow If $M_{n} \rightarrow 0$ in probability, then for all $\varepsilon>0$ we have $P\left(M_{n}>\varepsilon\right)=P\left(\sup _{i>n}\left|X_{i}\right|>\varepsilon\right) \rightarrow 0$
Take ω such that $\lim _{n \rightarrow \infty} X_{n}(\omega) \neq 0$, then there exists some $\varepsilon>0$ such that infinitely often, $\left|X_{n}(\omega)\right|>$ ε, hence $M_{n}(\omega)>\omega$ for all n.
Then $P\left(\lim _{n \rightarrow \infty} X_{n} \neq 0\right) \leq P\left(M_{n}>\varepsilon\right) \rightarrow 0$ so $X_{n} \rightarrow 0$ a.s.
\Leftarrow If $X_{n} \rightarrow 0$ a.s. then a.e. $X_{n} \rightarrow 0$ as a sequence, so $\forall \varepsilon>0$ there exists N such that $\forall n \geq N$ $\left|X_{n}\right|<\varepsilon$ and so $M_{N}=\sup _{n>N}\left|X_{n}\right|<\varepsilon$. So $P\left(M_{n}<\varepsilon\right) \rightarrow 1$ and conversely $P\left(M_{n}>\varepsilon\right) \rightarrow 0$.
36 What is Kolmogorov's 0-1 Law. What is the definition of a tail σ-algebra? What about tail random variables?

Given random variables X_{1}, X_{2}, \ldots define $\mathcal{F}_{n}=\sigma\left(X_{n}, X_{n+1}, \ldots\right)$ and the tail σ field is $\cap_{n} \mathcal{F}_{n}$. In words, it is events that depend only on the tail of the X_{i} 's, so changing a finite number will not affect the tail.
Kolmogorov's 0-1 Law If X_{1}, X_{2}, \ldots are independent and \mathcal{T} is their tail σ field, then for any $A \in \mathcal{T}$, $P(A) \in\{0,1\}$.
The key idea of the proof is to show that A is independent from itself, so that $P(A)=P(\cap A)=$ $P(A)^{n} \rightarrow 0,1$.
A tail random variable would be one that is measurable with respect to the tail field. In this case, $P(Z \in B)=0,1$ for all B, so it must be the case that Z is actually constant.
37 State Kolmogorov's Maximal Inequality. How does it compare to Chebyshev's Inequality?
Kolmogorov's Maximal Inequality Let X_{1}, X_{2}, \ldots be independent with $E X_{i}=0$ and $\operatorname{var}\left(X_{i}\right)<\infty$ then

$$
P\left(\max _{0 \leq m \leq n}\left|S_{m}\right| \geq x\right) \leq x^{-2} \operatorname{var}\left(S_{n}\right)
$$

In this setting, Chebyshev's Inequality only says that $P\left(\left|S_{n}\right| \geq x\right) \leq x^{-2} \operatorname{var}\left(S_{n}\right)$ but makes no claims about the partial sums along the way.

Chapter 3 - Central Limit Theorems

3.1 The De Moivre-Laplace Theorem

38 Give a concrete example of the Central Limit Theorem. How could you prove this directly?

The De Moivre-Laplace Theorem.

X_{1}, X_{2}, \ldots i.i.d with $P\left(X_{i}=1\right)=P\left(X_{i}=-1\right)=1 / 2$ and $S_{n}=X_{1}+\cdots X_{n}$ (e.g. betting $\$ 1$ on a coin flip, $S_{n}=$ winnings after n tosses)

$$
P\left(S_{n} / \sqrt{n} \leq b\right) \rightarrow \int_{-\infty}^{b}(2 \pi)^{-1 / 2} e^{-x^{2} / 2} d x
$$

So th distribution functions for S_{n} / \sqrt{n} converge to the distribution function for χ with normal distribution. So S_{n} / \sqrt{n} converges weakly to χ.

Direct Proof Sketch.

Express $P\left(S_{2 n}=2 k\right)$ in terms of factorials, then use Stirling's Formula to rewrite these. Careful choice of k with growth in terms of n, allows us to determine the asymptotic behavior which we show gives the integral desired.

3.2 Weak Convergence

39 What is weak convergence? How does it relate to convergence in probability and a.s. convergence?

Weak and a.s. Convergence

$X_{n} \Rightarrow X_{\infty}$ if and only if there exists $Y_{i} \stackrel{d}{=} X_{i}$ for $i \in \mathbb{N} \cup\{\infty\}$ such that $Y_{n} \rightarrow Y_{\infty}$ a.s.
Pf Sketch: Take $F_{n} \Rightarrow F_{\infty}$ dist from X and construct random variables directly from them $Y_{n}(x)=$ $\sup \left\{y: F_{n}(y)<x\right\}$. Then show that, except at countable places, $Y_{n}(x) \rightarrow Y_{\infty}(x)$ so $Y_{n} \rightarrow Y_{\infty}$ a.s.
Weak and Convergence in P
$X_{n} \rightarrow X_{\infty}$ in P implies $X_{n} \Rightarrow X_{\infty}$
Pf Sketch: (slightly tricky!)
Step 1: show $F(a-\varepsilon) \leq \lim _{n} F_{n}(a) \leq F(a+\varepsilon)$
Express $F_{X}(a) \leq F_{Y}(a+\varepsilon)+P(|X-Y| \geq \varepsilon)$ and apply twice to $F_{n}(a)$ and $F(a-\varepsilon)$
Step 2: For continuity point a, take $\varepsilon \rightarrow 0$ so then $\lim _{n} F_{n}(a) \rightarrow F(a)$.
$X_{n} \Rightarrow C$ for a constant C, then $X_{n} \rightarrow C$ in probability
Pf Sketch: Find $F_{C}(x)=1$ when $x \geq c$ and $F_{C}(x)=0$ when $x<C$ (so continuous outside $x=C$). Since $F_{n}(x) \rightarrow F_{C}(x)$,

$$
P\left(\left|X_{n}-C\right| \geq \varepsilon\right)=F_{n}(C-\varepsilon)+1-F_{n}(C+\varepsilon) \rightarrow F_{C}(C-\varepsilon)+1-F_{C}(C+\varepsilon)=0+1-1=0
$$

40 What is an example of a r.v. that converges weakly but not in probability?
Take $X_{n}:(0,1) \rightarrow(0,1)$ defined by $X_{n}(w)= \begin{cases}w & n=2 m \\ 1-w & n=2 m+1\end{cases}$
Then $F_{n}(x)=x$ for all n, and so $X_{n} \Rightarrow X_{1}$ however $X_{n} \nrightarrow Y$ for any Y because on $(0,1 / 3)$, $X_{2 m} \in(0,1 / 3)$ but $X_{2 m+1} \in(2 / 3,1)$ and so for any r.v. $Y,\left|X_{n}-Y\right|>1 / 6$ infinitely often, so $\liminf P\left(\left|X_{n}-Y\right| \geq \varepsilon\right) \geq 1 / 6$ and so does not converge to 0 .
41 Why do we only get convergence at continuity points for weak convergence?
Take $X_{n}=X+1 / n$ then $F_{n}(y)=F(y-1 / n)$ so only converges to $F(y)$ if F is left continuous (i.e. continuous) at y.

3.3 Characteristic Functions

42 What is the significance of the inversion formula for characteristic functions?

The inversion formula takes a characteristic function and produces the distribution function of the corresponding random variable. It's importance is that there is a 1-1 mapping between $\varphi(t)$ and $F(y)$.

43 Give an example where the characteristic functions φ_{n} of X_{n} converges to $\varphi(t)$ discontinuous at $t=0$. What is the limit of the distribution function of the X_{n} ?
$\varphi_{n}(t)=e^{-n t^{2} / 2}$. Then φ_{n} converge to $\varphi(t)=\left\{\begin{array}{ll}0 & t \neq 0 \\ 1 & t=0\end{array}\right.$ which is discontinuous at $t=0$.
The distribution function limit $F(y)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi n}} e^{-y^{2} / 2 n} \rightarrow 1 / 2$ for all x but hard to show.
44 Suppose you have X_{1}, X_{2}, \ldots and corresponding characteristic functions $\varphi_{1}, \varphi_{2}, \ldots$ converging point-wise to $\varphi(t)$. What can you say? What is tightness? How do continuity and tightness relate?

Initially, only that $\varphi(0)=1$ since all the φ_{n} are char. fun.
If φ is continuous at 0 (for example φ is char fun for some Y), then the φ_{n} are tight, and φ is a characteristic function for some X.
This is because the decay of the measure (captured by tightness condition) is related to the behavior of φ at 0 , specifically bounded by an integral that gets arbitrarily small if φ is continuous.

3.4 Central Limit Theorems

45 State the i.i.d. central limit theorem. Prove it (possibly with added assumptions)
Central Limit Theorem X_{1}, X_{2}, \ldots i.i.d. R.V.s with $E X_{i}=\mu$ and $\operatorname{var}\left(X_{i}\right)=\sigma^{2} \in(0, \infty)$ then

$$
\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \Rightarrow \chi=\mathcal{N}(0,1)
$$

Proof. Use characteristic functions. Assume $\mu=0$ and let X_{i} have characteristic function $\varphi(t)$. Then S_{n} has characteristic function $\varphi(t)^{n}$ and dividing by $\sigma \sqrt{n}$ gives $\varphi\left(\frac{t}{\sigma \sqrt{n}}\right)^{n}$.
Using a Taylor series approximation, $\varphi(t)=E e^{i t X}=1+i t E X-\frac{t^{2} E X^{2}}{2}+o\left(t^{2}\right)=1-\frac{t^{2} \sigma^{2}}{2}+o\left(t^{2}\right)$. So then

$$
\varphi_{S_{n} / \sigma \sqrt{n}}(t)=\left(1-\frac{t^{2} \sigma^{2}}{2 n \sigma^{2}}+o\left(\frac{t^{2}}{n}\right)\right)^{n}=\left(1-\frac{t^{2}}{2 n}+o\left(\frac{t^{2}}{n}\right)\right)^{n} \rightarrow\left(1+\frac{-t^{2} / 2}{n}\right)^{n} \rightarrow e^{-t^{2} / 2}=\varphi_{\chi}(t) .
$$

46 The type of convergence in the Central Limit Theorem is the convergence in distribution. Why isn't the convergence almost sure?
Claim: $\frac{S_{n}}{\sqrt{n}}$ cannot converge in probability (and thus not almost surely).
Suppose that it did, then $\left|\frac{S_{2 n}}{\sqrt{2 n}}-\frac{S_{n}}{\sqrt{n}}\right| \rightarrow 0$ in probability. Let $Y_{n}=\frac{S_{2 n}}{\sqrt{2 n}}-\frac{S_{n}}{\sqrt{n}}$.
Then $Y_{n} \rightarrow 0$ in probability, but can split up Y_{n} as

$$
Y_{n}=\frac{S_{2 n}}{\sqrt{2 n}}-\frac{S_{n}}{\sqrt{n}}=\frac{S_{2 n}-S_{n}}{\sqrt{2 n}}+\frac{S_{n}}{\sqrt{n}}\left(\frac{1}{\sqrt{2}}-1\right)
$$

and since $\frac{S_{n}}{\sqrt{n}} \Rightarrow \sigma \chi$, both pieces are independent and converge to a normal distribution with finite nonzero variance, so $Y_{n} \Rightarrow C \chi$ for some $C \neq 0$. This contradicts $Y_{n} \rightarrow 0$ in P (which implies $Y_{n} \Rightarrow 0$).
47 Suppose X_{1}, X_{2}, \ldots are bounded but $\sum_{n} \operatorname{var}\left(X_{n}\right)=\infty$, what can you say about the limiting behavior of S_{n} ?
Up to suitable scaling this will still converge to $\chi=\mathcal{N}(0,1)$.

Lindeberg-Feller CLT:

Triangular array $X_{n, m}$ independent variables for $1 \leq m \leq n$ where $E X_{n, m}=0$ and
(i) $\sum_{m=1}^{n} E X_{n, m}^{2} \rightarrow \sigma^{2}>0$ as $n \rightarrow \infty$
(ii) $\forall \varepsilon>0 \sum_{m=1}^{n} E\left(\left|X_{n, m}\right|^{2} ;\left|X_{n, m}\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$

$$
S_{n}=X_{n, 1}+\cdots+X_{n, n} \Rightarrow \sigma \chi
$$

So center the X_{i} 's so that they have mean 0 . Then we want to scale by something so that $\sum_{m=1}^{n} E X_{n, m}^{2}$ converges to a positive finite value. If $X_{n, m}=X_{m} / c_{n}$ then this sum will be $\frac{1}{c_{n}^{2}} \sum_{m=1}^{n} \operatorname{var}\left(X_{i}\right)$ so letting $c_{n}=\sqrt{\operatorname{var}\left(S_{n}\right)}$ this is exactly 1 for all n.
Now for (ii), since the X_{m} are bounded, and the denominator goes to ∞, at some point $\mid X_{n, m}<\varepsilon$ so the sum is 0 .
Applying L-F CLT,

$$
X_{n, 1}+\cdots+X_{n, m}=\frac{S_{n}}{c_{n}}=\frac{S_{n}}{\sqrt{\operatorname{var}\left(S_{n}\right)}} \Rightarrow \chi
$$

and if we add back in the means, we have $\frac{S_{n}-E S_{n}}{\sqrt{\operatorname{var}\left(S_{n}\right)}} \Rightarrow \chi$.
48 What is the Lindeberg-Feller Central Limit Theorem? How does it relate to the i.i.d. Central Limit Theorem?

Lindeberg-Feller CLT:

Triangular array $X_{n, m}$ independent variables for $1 \leq m \leq n$ where $E X_{n, m}=0$ and
(i) $\sum_{m=1}^{n} E X_{n, m}^{2} \rightarrow \sigma^{2}>0$ as $n \rightarrow \infty$
(ii) $\forall \varepsilon>0 \sum_{m=1}^{n} E\left(\left|X_{n, m}\right|^{2} ;\left|X_{n, m}\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$

$$
S_{n}=X_{n, 1}+\cdots+X_{n, n} \Rightarrow \sigma \chi
$$

This is a generalization of the i.i.d. CLT, because we can take $X_{n, m}=\frac{X_{m}}{\sqrt{n}}$ then $X_{n, 1}+\cdots+X_{n, n}=$ $\frac{S_{n}}{\sqrt{n}} \Rightarrow \chi$.
Condition (i) follows directly from computation, and (ii) converges to zero by dominated convergence theorem and the fact that $P\left(\left|X_{m}\right|>\varepsilon \sqrt{n}\right) \rightarrow 0$ by applying Chebyshev's Inequality and using the finite variance of X_{m}.

3.6 Poisson Convergence

49 What is Poisson Convergence and why is it called the "law of rare events"?

Poisson Convergence (or Poisson Limit Theorem) gives an analogous limit theorem to CLT but for a triangular array of Bernoulli variables with a Poisson distribution as the limiting behavior.
This is called the law of rare events because the probability of the events ($X_{n, m}=1$) must get small as n grows, so the sum is counting the number of rare occurrences.

3.10 Limit Theorems in \mathbb{R}^{d}

50 State and prove the Central Limit Theorem. Can you state a version of the Central Limit Theorem for random vectors?
Central Limit Theorem X_{1}, X_{2}, \ldots i.i.d. R.V.s with $E X_{i}=\mu$ and $\operatorname{var}\left(X_{i}\right)=\sigma^{2} \in(0, \infty)$ then

$$
\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \Rightarrow \chi=\mathcal{N}(0,1)
$$

Proof. Use characteristic functions. Assume $\mu=0$ and let X_{i} have characteristic function $\varphi(t)$. Then S_{n} has characteristic function $\varphi(t)^{n}$ and dividing by $\sigma \sqrt{n}$ gives $\varphi\left(\frac{t}{\sigma \sqrt{n}}\right)^{n}$.
Using a Taylor series approximation, $\varphi(t)=E e^{i t X}=1+i t E X-\frac{t^{2} E X^{2}}{2}+o\left(t^{2}\right)=1-\frac{t^{2} \sigma^{2}}{2}+o\left(t^{2}\right)$. So then

$$
\varphi_{S_{n} / \sigma \sqrt{n}}(t)=\left(1-\frac{t^{2} \sigma^{2}}{2 n \sigma^{2}}+o\left(\frac{t^{2}}{n}\right)\right)^{n}=\left(1-\frac{t^{2}}{2 n}+o\left(\frac{t^{2}}{n}\right)\right)^{n} \rightarrow\left(1+\frac{-t^{2} / 2}{n}\right)^{n} \rightarrow e^{-t^{2} / 2}=\varphi_{\chi}(t)
$$

Central Limit Theorem in $\mathbb{R}^{d} X_{1}, X_{2}, \ldots$ i.i.d random vectors with $E X_{i}=\mu \in \mathbb{R}^{d}$ with finite covariance $\Gamma_{i, j}=E\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)$,

$$
\frac{S_{n}-n \mu}{\sqrt{n}} \Rightarrow \mathcal{N}_{d}(0, \Gamma)
$$

where $\mathcal{N}_{d}(0, \Gamma)$ is the multivariate Gaussian with mean 0 and covariance Γ.

Chapter 4 - Martingales

4.1 Conditional Expectation

51 What are regular condition probabilities? Why are they useful?

A regular conditional distribution of X with respect to \mathcal{F} where $X:(\Omega, \mathcal{F}) \rightarrow(S, \mathcal{S})$ is a function $\mu: \Omega \times \mathcal{S} \rightarrow[0,1]$ such that
i. Fixing $\omega \in \Omega, A \in \mathcal{S} \mapsto \mu(\omega, A)$ is a probability measure on \mathcal{S}
ii. Fixing $A \in \S, \omega \in \Omega \mapsto \mu(\omega, A)$ is a version for $E(X \in A \mid \mathcal{F})$.

If X is the identity on Ω then $\mu(\omega, A)$ is a version for $E\left(1_{A} \mid \mathcal{F}\right)=P(A \mid \mathcal{F})$ and μ is a regular conditional probability.
These are useful because they give a way of computing conditional expectations on $f(X)$, via $E(f(X) \mid$ $\mathcal{F})=\int f(x) \mu(\omega, d x)$.

4.2 Martingales, Almost Sure Convergence

52 What are some examples of martingales? Submartingales?

symmetric random walk on \mathbb{Z} is martingale, if non-symmetric could be sub/super martingale.
Betting on a fair casino game ... earnings at time n is martingale. Unfair game gives a supermartingale.

53 What is the upcrossing inequality? Why is it useful? How is it proved?

Upcrossing Inequality If X_{n} is submartingale, $a<b$, and U_{n} denotes the number of complete upcrossings (going from $X_{n} \leq a$ to $x_{n} \geq b$) by time n, then

$$
(b-a) E U_{n} \leq E\left(X_{n}-a\right)^{+}-E\left(X_{0}-a\right)^{+} .
$$

Proof. First we switch to $Y_{n}=\left(X_{n}-a\right)^{+}$so that we do not incur losses from incomplete upcrossings but maintain all the upcrossing behavior of X_{n}. Define the predictable sequence (betting strategy) H_{n} to be 1 when between occurences of $Y_{n} \leq a$ and the next time $Y_{n} \geq b$ (i.e. only bets during upcrossing phases). Then $(b-a) U_{n} \leq(H \cdot Y)_{n}$.

Now take the complement strategy $(1-H)_{n}$ and since X_{n} is submartingale, so is Y_{n} and so $(1-H \cdot Y)_{n}$ is submartingale too, meaning $E(1-H \cdot Y)_{n} \geq E(1-h \cdot Y)_{0}=0$. It also satisfies $(1-H \cdot Y)_{n}+(H \cdot Y)_{n}=$ $Y_{n}-Y_{0}$.

$$
(b-a) E U_{n} \leq E(H \cdot Y)_{n} \leq E(H \cdot Y)_{n}+E(1-H \cdot Y)_{n}=E\left(Y_{n}-Y_{0}\right)=E\left(X_{n}-a\right)^{+}-E\left(X_{0}-a\right)^{+} .
$$

Application: The upcrossing inequality is primarily useful in proving the Martingale A.S. convergence theorem.

54 Give the definition of martingales and state the a.s. convergence theorem for them. How can you prove this convergence theorem?

Martingale A sequence of random variables X_{n} adapted to a filtration \mathcal{F}_{n} such that $E\left|X_{n}\right|<\infty$ for all n and $E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}$ for all $n \geq 0$.
If $E\left(X_{n+1} \mid \mathcal{F}_{n}\right) \geq X_{n}$ then X_{n} is submartingale. If $E\left(X_{n+1} \mid \mathcal{F}_{n}\right) \leq X_{n}$ then X_{n} is supermartingale.

A.S. Convergence Theorem

If X_{n} is submartingale and $\sup _{n} E X_{n}^{+}<\infty$ then $X_{n} \rightarrow X$ a.s. and $E|X|<\infty$.
Proof. First, we use apply the upcrossing inequality, noting that $E\left(X_{n}-a\right)^{+} \leq E X_{n}^{+}+|a|$, so then

$$
(b-a) E U_{n} \leq E\left(X_{n}-a\right)^{+}-E\left(X_{0}-a\right)^{+} \leq E X_{n}^{+}+|a| \leq \sup _{n} E X_{n}^{+}+|a|<\infty
$$

so we see that $E U_{n}<\infty$ for all $a<b$. As $n \rightarrow \infty, E U_{n} \uparrow E U$ so by monotone convergence we have that $E U<\infty$ also. This means that $U<\infty$ a.s..
On the set where $U<\infty$ we will show that $\lim _{n} X_{n}$ exists. Suppose that $\liminf _{n} X_{n}<\lim \sup _{n} X_{n}$ then choose $a<b$ between them. Since $\liminf _{n} X_{n}<a<b<\lim \sup _{n} X_{n}$ there would be infinitely many upcrossings to maintain support for $\lim \inf$, $\lim \sup$ so $U \nless \infty$ but this happens on a measure zero set, so $\liminf _{n} X_{n}=\limsup _{n} X_{n}=\lim _{n} X_{n}$ a.s. and let $X=\lim _{n} X_{n}$.
Now to conclude that $E|X|<\infty$ we apply Fatou's lemma to each piece, namely $E|X|=E X^{+}+E X^{-}$. By Fatou's, $\liminf _{n} E X_{n}^{+} \geq E X^{+}$and

$$
\liminf _{n} E X_{n}^{+}<\sup _{n} E X_{n}^{+}<\infty
$$

so $E X^{+}<\infty$. Now for the negation, $X_{n}^{-}=X_{n}^{+}-X_{n}$, and applying Fatou's

$$
E X^{-} \leq \liminf _{n} E X_{n}^{-} \leq \liminf _{n} E X_{n}^{+}<\sup _{n} E X_{n}^{+}<\infty .
$$

55 Can you give an example of a martingale that converges a.s. but not in L^{1} ? What condition can we put on the sequence to prevent this?
Let S_{n} be a symmetric random walk on \mathbb{Z} starting at 1 . Let N be the stopping time $N=\inf \left\{n: S_{n}=\right.$ $0\}$. Define $X_{n}=S_{N \wedge n}$. This will converge a.s. to 0 . First, taking $-X_{n} \leq 0$ which is also martingale, we have $\sup _{n}\left(-X_{n}\right)^{+}=0<\infty$ so $X_{n} \rightarrow X_{\infty}$ a.s.. If $X_{\infty} \neq 0$ then taking $\varepsilon=1 / 2$, we see that if $\left|X_{n}-X_{\infty}\right|<\varepsilon$ then $\left|X_{n+1}-X_{\infty}\right|>\varepsilon$ so it does not converge, implying that $X_{\infty}=0$.
However $E\left|X_{n}-0\right|=E\left|S_{N \wedge n}\right|=E\left|S_{N \wedge 0}\right|=E\left|S_{0}\right|=1$ for all n, so convergence does not happen in L^{1}.
If UI then a.s. convergence gives L^{1} convergence and vice versa.
56 Let X_{n} be a martingale with respect to \mathcal{F}_{n}, and suppose $E\left(X_{n}^{2}\right) \leq B<\infty$ for all n. What can you conclude about X_{n} ?
Hint: can we apply a convergence theorem to it?
$\left(E X_{n}^{+}\right)^{2} \leq E\left(X_{n}^{+}\right)^{2} \leq E X_{n}^{2} \leq B$. So $\sup _{n} E X_{n}^{+} \leq \sqrt{B}<\infty$ so we can apply a.s. convergence to X_{n}.

57 Let X_{n} be a submartingale, H_{n} be a predictable sequence, and N a stopping time. Show that $(H \cdot X)_{n}$ and $X_{N \wedge n}$ are both submartingale as well.

$$
\begin{aligned}
E\left((H \cdot X)_{n} \mid \mathcal{F}_{n-1}\right) & =E\left(\sum_{m=1}^{n} H_{m}\left(X_{m}-X_{m-1}\right) \mid \mathcal{F}_{n-1}\right)=\sum_{m=1}^{n} E\left(H_{m}\left(X_{m}-X_{m-1}\right) \mid \mathcal{F}_{n-1}\right) \\
& =E\left(H_{n}\left(X_{n}-X_{n-1}\right) \mid \mathcal{F}_{n-1}\right)+\sum_{m=1}^{n-1} H_{m}\left(X_{m}-X_{m-1}\right) \\
& =H_{n} E\left(X_{n} \mid \mathcal{F}_{n-1}\right)-H_{n} X_{n-1}+\sum_{m=1}^{n-1} H_{m}\left(X_{m}-X_{m-1}\right) \\
& =\sum_{m=1}^{n-1} H_{m}\left(X_{m}-X_{m-1}\right)=(H \cdot X)_{n-1}
\end{aligned}
$$

Now define the predictable sequence $H_{n}=1_{N>n}$. Then $(H \cdot X)_{n}$ is submartingale, and evaluates to $X_{N \wedge n}-X_{0}$. Adding back X_{0} gives that $X_{N \wedge n}$ is submartigale as well.

4.3 Examples

58 Second Borel-Cantelli Lemma Version II

Thm. \mathcal{F}_{n} a filtration (with $\mathcal{F}_{0}=\{\emptyset, \Omega\}$), and $B_{n}, n \geq 1$ sequence of events with $B_{n} \in \mathcal{F}_{n}$.

$$
\left\{B_{n} \text { i.o }\right\}=\left\{\sum_{n=1}^{\infty} P\left(B_{n} \mid \mathcal{F}_{n-1}\right)=\infty\right\}
$$

Pf Sketch: Take $X_{n}=\sum_{m=1}^{n} 1_{B_{n}}$, then this is submartingale. Apply Doob's decomposition to get $X_{n}=M_{n}+A_{n}$ where the martingale will be bounded. Using bounded increments, consider how the limit of X_{n} (sum of indicators) relates to the limit in M_{n}, in each of the cases given by bounded increments.

4.4 Doob's Inequality, Convergence in $L^{p}, p>1$

59 When can we conclude L^{p} convergence for martingales? How is it proved? Is there a similar proof for L^{1} ?
L^{p} Convergence Theorem If X_{n} is submartingale and $\sup _{n} E\left|X_{n}\right|^{p}<\infty\left(\right.$ for some $p>1$) then X_{n} converges a.s. and in L^{p} to some X.
Proof. First we show a.s. convergence. Observe that $\left(X_{n}^{+}\right)^{p} \leq\left|X_{n}\right|^{p}$ so $\sup E X_{n}^{+} \leq \sqrt[p]{\sup _{n} E\left|X_{n}\right|^{p}}<$ ∞ so the a.s. convergence lemma gives that $X_{n} \rightarrow X$ a.s. and $E|X|<\infty$.
Now to show that this convergence happens in L^{p} we need to apply an integral convergence theorem to $E\left|X_{n}-X\right|^{p}$ since $\left|X_{n}-X\right|^{p} \rightarrow|X-X|^{p}=0$ since $X_{n} \rightarrow X$ a.s.. First we apply L^{p} maximal inequality to get

$$
E\left(\max _{0 \leq m \leq n}\left|X_{m}\right|^{p}\right) \leq\left(\frac{p}{p-1}\right)^{p} E\left|X_{n}\right|^{p}
$$

and taking $n \rightarrow \infty$ we have

$$
E\left(\left(\sup _{n}\left|X_{m}\right|\right)^{p}\right)=E\left(\sup _{n}\left|X_{m}\right|^{p}\right) \leq\left(\frac{p}{p-1}\right)^{p} \sup _{n} E\left|X_{n}\right|^{p}<\infty .
$$

Now we can use $\left(\sup _{n}\left|X_{m}\right|\right)^{p}$ to apply dominated convergence since

$$
\left|X_{n}-X\right| \leq\left|X_{n}\right|+|X| \leq \sup _{n}\left|X_{n}\right|+\lim \left|X_{n}\right| \leq 2 \sup _{n}\left|X_{n}\right|
$$

so $\left|X_{n}-X\right|^{p} \leq 2^{p}\left(\sup _{n}\left|X_{n}\right|\right)^{p}$ and since p is fixed, 2^{p} is a fixed finite constant, making $2^{p}\left(\sup _{n}\left|X_{n}\right|\right)^{p}$ integrable by our inequality above. Then dominated convergence applies to $E\left|X_{n}-X\right|^{p} \rightarrow 0$ so our convergence happens in L^{p}.
L^{1} convergence There is no similar proof for L^{1} convergence because there is no L^{1} maximal inequality. Instead L^{1} convergence is proved using uniform integrability.

60 How does Doob's Inequality relate to Kolmogorov's Maximal Inequality?

Doob's Inequality For X_{n} submartingale and λ some constant, then

$$
P\left(\max _{0 \leq m \leq n} X_{n}^{+} \geq \lambda\right) \leq \lambda^{-1} E\left(X_{n}^{+}\right)
$$

Kolmogorov's Inequality X_{n} independent random variables with $E X_{n}=0$ and $\operatorname{var}\left(X_{i}\right)<\infty$. Then $S_{n}=X_{1}+\cdots+X_{n}$ and taking x, satisfies

$$
P\left(\max _{0 \leq m \leq n}\left|S_{m}\right| \geq x\right) \leq x^{-1} \operatorname{var}\left(S_{n}\right) .
$$

Claim: Doob's Inequality \Longrightarrow Kolomogorov's Inequality
Since $E X_{n}=0, S_{n}$ from Kolmo. is a submartingale, and since $x \mapsto x^{2}$ is convex and $E\left|S_{n}^{2}\right|=$ $\sum \operatorname{var}\left(X_{i}\right)<\infty, S_{n}^{2}$ is submartingale as well. Applying Doob's to this with $\lambda=x^{2}$ gives the desired result.

4.6 Uniform Integrability, Convergence in L^{1}

61 Show that if X_{n} is uniformly integrable and N is a stopping time that $X_{N \wedge n}$ is also uniformly integrable.
First we break up $E\left(\left|X_{N \wedge n}\right| ;\left|X_{N \wedge n}\right|>M\right)=E\left(\left|X_{N}\right| ;\left|X_{N}\right|>M, N \leq n\right)+E\left(\left|X_{n}\right| ;\left|X_{n}\right|>M ; n<N\right)$. We will show that $E\left|X_{N}\right|<\infty$ to show that the first piece goes to 0 as $M \rightarrow \infty$. For this, we want to show that X_{n} u.i. implies $X_{N \wedge n} \rightarrow X_{N}$ a.s. by the a.s. convergence theorem which also tells us that $E\left|X_{N}\right|<\infty$. To see this, choose $M \gg 0$ such that $\sup _{n} E\left(\left|X_{n}\right| ;\left|X_{n}\right|>M\right) \leq 1$. Then $\sup E\left|X_{n}\right| \leq M+1<\infty$. Since $X_{N \wedge n}$ is submartingale, $E\left|X_{N \wedge n}\right| \leq E\left|X_{n}\right|$ for all n, so

$$
\sup _{n} E X_{N \wedge n}^{+} \leq \sup _{n} E\left|X_{N \wedge n}\right| \leq \sup _{n} E\left|X_{n}\right|<\infty
$$

so a.s. convergence tells us that $X_{N \wedge n} \rightarrow X$ a.s.. And since $N \wedge n \uparrow N$ as $n \rightarrow \infty$, we have that $X=X_{N}$, thus $E\left|X_{N}\right|<\infty$.
Now the second piece goes to 0 as $M \rightarrow \infty$ because X_{n} is U.I. and the added $n<N$ condition only shrinks the expectation. Hence the combined sum goes to 0 making $X_{N \wedge n}$ U.I.

4.7 Backwards Martingales

62 What are backwards martingales? What can you say about their convergence?
Backwards Martingales: X_{-n} indexed by $n=1,2,3, \ldots$ and adapted to the filtration \mathcal{F}_{-n}, (i.e. $\left.\cdots \subseteq \mathcal{F}_{-2} \subseteq \mathcal{F}_{-1} \subseteq \mathcal{F}_{0}\right)$ such that $E\left(X_{-n+1} \mid \mathcal{F}_{-n}\right)=X_{-n}$ (i.e. $\left.E\left(X_{0} \mid \mathcal{F}_{-1}\right)=X_{-1}\right)$

Given the direction of the filtration, these have nicer convergence theorems.
Backwards Convergence Theorem If X_{n} is a backwards martingale, it converges a.s. and in L^{1}. Proof (using U.I. convergence). $X_{n}=E\left(X_{0} \mid \mathcal{F}_{-n}\right)$ and since $E\left|X_{0}\right|<\infty$, this is a UI collection, and since X_{n} are submartingale and U.I. they converge a.s. and in L^{1}.
Proof (using A.S. conv). Applying the upcrossing inequality to X_{-n}, \ldots, X_{0} we have ($b-a$) $E U_{n} \leq$ $E\left(X_{0}-a\right)^{+}-E\left(X_{-n}-a\right)^{+} \leq E\left(X_{0}-a\right)^{+}$so this is finite meaning $E U<\infty$ so $U<\infty$ a.s. which just as for submartingales implies that the limit exists a.s..
Now use U.I to lift this to L^{1} convergence. Define the cut-off function $\varphi_{M}(x)$ to be x where $x \in$ $[-M, M]$ but stay at $\pm M$ when it goes beyond, then

$$
E\left|X_{n}-X\right| \leq E\left|X_{n}-\varphi_{M}\left(X_{n}\right)\right|+E\left|\varphi_{M}\left(X_{n}\right)-\varphi(X)\right|+E\left|\varphi_{M}(X)-X\right|
$$

We show each piece goes to 0 as $M \rightarrow \infty$.
First, $E\left|X_{n}-\varphi_{M}\left(X_{n}\right)\right|=E\left(\left|X_{n}-\varphi_{M}\left(X_{n}\right)\right| ;\left|X_{n}\right|>M\right) \leq E\left(\left|X_{n} ;\left|X_{n}\right|>M\right) \rightarrow 0\right.$ since X_{n} is U.I. Second, $E\left|\varphi_{M}\left(X_{n}\right)-\varphi(X)\right| \rightarrow 0$ since $X_{n} \rightarrow X$ a.s. and φ_{M} is a bounded and continuous function. Third, $E\left|\varphi_{M}(X)-X\right|=E\left(\left|X-\varphi_{M}(X)\right| ;|X|>M\right) \leq E(|X| ;|X|>M) \rightarrow 0$ since $E|X|<\infty$.
63 Use reverse martingales to derive the SLLN. Hint: let $\mathcal{F}_{-n}=\sigma\left(S_{n}, X_{n+1}, X_{n+2}, \ldots\right)$.
SLLN X_{1}, X_{2}, \ldots iid with $E X_{i}=\mu$ and $E\left|X_{i}\right|<\infty$. Then $S_{n} / n \rightarrow \mu$ a.s.
Let $Y_{-n}=\frac{S_{n}}{n}$. First we want to show that this gives a backwards martingale with respect to the filtration given. Then we show that $Y_{-\infty}=\mu$.
Since $Y_{-n}=S_{n} / n \in \sigma\left(S_{n}\right) \subseteq \mathcal{F}_{-n}$ so it is adapted to \mathcal{F}_{-n}. Since $E\left|X_{i}\right|<\infty$, we have $E\left|Y_{-n}\right|<\infty$. Finally,

$$
E\left(Y_{-n+1} \mid \mathcal{F}_{-n}\right)=E\left(\left.\frac{X_{1}+\cdots X_{n-1}}{n-1} \right\rvert\, \sigma\left(S_{n}, X_{n+1}, \ldots\right)\right)
$$

With respect to $\sigma\left(S_{n}\right)$ all the X_{1}, \ldots, X_{n-1} are interchangeable and have expectation $E X_{i}=S_{n} / n$. So this gives $\frac{(n-1) \frac{S_{n}}{n}}{n-1}=\frac{S_{n}}{n}=Y_{-n}$ so Y_{-n} is a backwards martingale.
By the backwards martingale convergence we have $\frac{S_{n}}{n}=Y_{-n} \rightarrow Y_{-\infty}$ a.s.. And $Y_{-\infty}=E\left(Y_{-1} \mid\right.$ $\left.\mathcal{F}_{-\infty}\right)=E\left(X_{1} \mid \cap_{n} \mathcal{F}_{-n}\right)$. Since $\cap_{n} \mathcal{F}_{-n}$ is the exchangable algebra for $X_{1}, \ldots Y_{-\infty}$ is trivial and thus constant with expectation $E\left(X_{1}\right)=\mu$ so $S_{n} / n \rightarrow \mu$ a.s.

4.8 Optional Stopping Theorems

64 What is optional stopping? What are some conditions under which it holds?

If X_{n} is a submartingale and N is a stopping time then $X_{N \wedge n}$ is submartingale so $E X_{N \wedge 0} \leq E X_{N \wedge n}$ for all n, but this can only be strengthened to $E X_{0} \leq E X_{N}$ when optional stopping holds. Rephrasing, we want to know when $E X_{N \wedge n} \rightarrow E X_{N}$, for example when we could apply integral convergence theorems to it.
Some cases when this holds:

1. Whenever usual integral convergence theorems hold for $E X_{N \wedge n}$.
2. If N is bounded a.s., that is $P(N \leq k)=1$ for some k. Then $E X_{0} \leq E X_{N} \leq E X_{k}$.
[Pf.] $X_{N \wedge n}$ submartingale, so $E X_{0}=E X_{N \wedge 0} \leq E X_{N \wedge k}=E X_{N}$. Then $K_{n}=1_{N>n}$ predictable, so $E X_{k}-E X_{N}=(K \cdot X)_{k} \geq 0$
3. X_{n} U.I. then $E X_{0} \leq E X_{N} \leq E X_{\infty}$.
X_{n} U.I. $\Longrightarrow X_{N \wedge n}$ U.I. too. $\Longrightarrow X_{N \wedge n} \rightarrow X_{N}$ a.s. and in L^{1}.
$E X_{N}-E X_{0} \leq E\left|X_{N}-X_{N \wedge n}\right|+E X_{N \wedge n}-E_{X} 0 \rightarrow E X_{N \wedge n}-E_{X} 0 \geq 0$
4. $E\left(\left|X_{n+1}-X_{n}\right| \mathcal{F}_{n}\right) \leq B<\infty$ a.s. and $E N<\infty$

Show that $X_{N \wedge n}$ is U.I. by bounding by integrable r.v. in terms of sum of increments.
65 Let $\zeta_{1}, \zeta_{2}, \ldots$, be i.i.d. with $E \zeta_{i}=\mu, N$ a stopping time with finite expectation. Show that $E S_{N}=\mu E N$.

Here is an example where we can get optional stopping by appealing to traditional methods.
Let $X_{n}=S_{N \wedge n}-\mu(N \wedge n)$. Since this is martingale, $E X_{0}=E X_{n}$ for all n meaning $E S_{N \wedge n}=$ $\mu E(N \wedge n)$. On the right hand side, $0 \leq N \wedge n \uparrow N$ and N has finite expectation so $E(N \wedge n) \rightarrow E N$. The left hand side is a little more careful. First, we argue a reduction to the case that $\zeta_{i} \geq 0$. If not, let $\zeta_{i}=\zeta_{i}^{+}-\zeta_{i}^{-}$. Since the ζ_{i} are iid then so too are the $\zeta_{i}^{ \pm}$. Now $E S_{N \wedge n}=E S_{N \wedge n}^{+}-E S_{N \wedge n}^{-}$so if can show each piece converges in an optional stopping way this suffices. Now if $\zeta_{i} \geq 0$ then $S_{N \wedge n} \geq 0$ and is martingale, so we can apply the a.s. convergence (take $-S \leq 0$ to bound sup) and $S_{N \wedge n} \rightarrow S_{N}$ a.s.. Now with a.s. convergence we have convergence of the expectations so $E S_{N \wedge n} \rightarrow E S_{N}$ as desired.

66 Apply optional stopping to get a formula for the probability that the simple symmetric random walk on \mathbb{Z}, started at 0 , hits some $-a$ before b ? What is the expected time it takes for either of these to happen?
Let S_{n} be our simple symmetric random walk. Define $N=\inf \left\{n: S_{n}=-a\right.$ or $\left.S_{n}=b\right\}$. If we can apply optional stopping to $S_{N \wedge n}-N \wedge n$ then $E S_{N}=E S_{0}=0$ and we can directly compute $E S_{N}$ in terms of $P\left(S_{N}=-a\right)$.
We obtain optional stopping by showing that $E N<\infty$ and the conditional expectation of the increments is bounded. The latter is easy since $E\left(\left|S_{n+1}-S_{n}\right| \mid \mathcal{F}_{n}\right)=E\left(1 \mid \mathcal{F}_{n}\right) \leq 1<\infty$. Now to bound N, observe that in $a+b$ steps if every step is in the same direction we will trigger N, so if $P(N>a+b)$ then we can't take all steps in the same direction so $P(N>a+b)<1-2^{a+b}$. If we take $m(a+b)$ steps we can repeat this calculation m times to get $P(N>m(a+b))<\left(1-2^{a+b}\right)^{m}$. Since this is a gemetric series that has a finite sum, $E N<\infty$.
Now applying optional stopping

$$
0=E S_{N}=-a P\left(S_{N}=-a\right)+b\left(1-P\left(S_{N}=-a\right)\right) \Longrightarrow P\left(S_{N}=-a\right)=\frac{b}{a+b}
$$

Now to compute $E N$ we want to look at $X_{n}=S_{n}^{2}-n$ which is martingale ($\sigma=1$). Applying bounded optional stopping, $E\left(S_{N \wedge n}^{2}-N \wedge n\right)=E X_{0}=0$ so $E S_{N \wedge n}^{2}=E(N \wedge n)$. The right hand side converges to $E N$ by monotone convergence. The left hand side is a martingale that is bounded below by 0 so taking $-S_{N \wedge n}^{2}$ gives a.s. convergence to S_{N}^{2}. Hence $E N=E S_{N}^{2}=a^{2} P(a)+b^{2} P(b)=\frac{a^{2} b}{a+b}+\frac{b^{2} a}{a+b}=a b$.

Chapter 5 - Markov Chains

5.1 Examples

67 Give an example of a Markov chain. What about a markov chain that is also martingale?

A markov chain is "memory-less" sequence of random variables, so a random walk is an example, betting in a casino is an example. Branching processes are another.

Random walks that are symmetric are also martingale since the probabilities balance out. Betting in a casino on a fair game would be martingale.

68 Give the transition probabilities for Ehrenfest chain.

The Ehrenfest chain is the markov chain described by partitioning a box into two sides and distributing m marbles between the two sides. At each step, randomly select a marble from the box as a whole (with equal prob for all marbles) and move that marble to the other side. Let X_{n} be the fraction of marbles on the left side (or right by symmetry but fix one).
Then if $X_{n}=r$ the probability that $X_{n}=r+1$ is $p(r, r+1)=\frac{m-r}{m}$ and $X_{n}=r-1$ is $p(r, r-1)=\frac{r}{n}$ and $p(k, l)=0$ for all other pairs.

5.2 Construction, Markov Properties

69 What is the Markov Property? The Strong Markov Property?

The markov property is that the probability of X_{n} depends only on X_{n-1}. Formally, for any event A and $\mathcal{F}_{n-1}=\sigma\left(X_{1}, \ldots, X_{n-1}\right), P\left(X_{n} \in A \mid \mathcal{F}_{n-1}\right)=P\left(X_{n} \in A \mid X_{n-1}\right)$.
The strong markov property generalizes this to stopping times. So if N is a stopping time and $\mathcal{F}_{N}=\left\{A: A \cap\{N=n\} \in \mathcal{F}_{n}\right\}$ then $P\left(X_{N+1} \in A \mid \mathcal{F}_{N}\right)=P\left(X_{N+1} \mid X_{N}\right)$.
Both properties extend beyond the 'next' state so that $P\left(X_{n+t} \in A \mid \mathcal{F}_{n-1}\right)=P\left(X_{n+t} \in A \mid X_{n-1}\right)$.

5.3 Recurrence and Transience

70 Define recurrence and transience. What does "recurrence is contagious" mean? Prove it.

Recurrence is a property of a state the $\rho_{x x}=P_{x}\left(T_{x}<\infty\right)=1$, i.e. the probability of starting at x and returning to x in finite time is 1 .
Claim: If x, y are in an irreducible set (or just $\rho_{x y}>0$) and x is recurrent, then y is recurrent also. Proof. Let $N(y)$ be the number of visits to y, we show that $E_{y} N(y)=\infty$ and use this to show that $\rho_{y y}=1$.
First, $E_{y} N(y)=\sum_{n=0}^{\infty} p^{n}(y, y) \geq \sum_{k=0}^{\infty} p^{a}(y, x) p^{k}(x, x) p^{b}(x, y)=p^{a}(y, x) p^{b}(x, y) \sum_{k=0}^{\infty} p^{k}(x, x)=$ $p^{a}(y, x) p^{b}(x, y) E_{x} N(x)$.
Next we show that $E_{z} N(z)=\infty$ iff $\rho_{z z}=1$ which follows immediately from the following:

$$
E_{z} N(z)=\sum_{n=0}^{\infty} P_{z}(N(z) \geq n)=\sum_{n=0}^{\infty} \rho_{z z}^{n}=\frac{1}{1-\rho_{z z}} .
$$

Now if $\rho_{x x}=1$, then $E_{x} N(x)=\infty$ and since x, y are in an irreducible set we can find a, b such that $p^{a}(y, x), p^{b}(x, y)>0$ so then $E_{y} N(y)=\infty$ meaning $\rho_{y y}=1$ and y is reccurent as well.

71 Give a decomposition for the set of recurrent states in a markov chain.
Let R be the collection of all reccurent states in a markov chain. We will show that R can be decomposed into disjoint closed and irreducible collections.
Let $x \in R$ and define $C_{x}=\left\{y: \rho_{x y}>0\right\}$. We will show that $\rho_{x y}>0$ is an equivalence relation on reccurent states. First, $\rho_{x x}=1>0$ so it is reflexive. Second, if $\rho_{x y}>0$ then since x is recurrent it must be able to get back so that $\rho_{y x}>0$ too. Finally, if $\rho_{x y}, \rho_{y z}>0$ then there exists some n, m such that $p^{n}(x, y)>0$ and $p^{m}(y, z)>0$ so then $p^{n+m}(x, z) \geq p^{n}(x, y) p^{m}(y, z)>0$ making $\rho_{x z}>0$. Thus we can partition R into these sets.

Now we show that C_{x} is irreducible and closed. If $y, z \in C_{x}$ then $\rho_{x y}, \rho_{x z}>0$ but by symmetry and transitivity, this means $\rho_{y z}>0$ so this is irreducible. Now if $y \in C_{x}$ and $\rho_{y z}>0$ then by transitivity, $\rho_{x z}>0$ so $z \in C_{x}$ meaning it is closed.

5.5 Stationary Measures

72 Let p have a stationary measure, can you say anything recurrent states? What can you add to say something about recurrent states?

Initially not much, might not even have one for example symmetric random walk of \mathbb{Z} all states are transient but the uniform measure is a stationary measure.
If the stationary measure can be scaled to be a distribution then on an irreducible subset taking positive probabilities all states are positive recurrent.

5.6 Asymptotic Behavior

73 Give an example of a periodic markov chain and explain why it cannot converge.
The Ehrenfest chain has period 2 , since the parity of X_{n} changes at each step, meaning that $p^{n}(x, x)=$ 0 when n is odd. This chain cannot converge for exactly this reason, if π were a stationary measure, and x is any state with positive mass (which will be recurrent), $\left|p^{n}(x, x)-\pi(x)\right|$ will infinitely often take the value $|\pi(x)|>0$ so cannot converge to zero.

74 State and prove a convergence theorem for markov chains.

Convergence: If p is a markov chain that is irreducible and aperiodic with a stationary measure π, then $p^{n} \rightarrow \pi$ (convergence of measures).
Proof. We proceed by constructing a paired markov chain $X \times Y$ both with the same transition probability p but X starting at some state x and Y starting with the initial stationary distribution π. Define the transition probability $\bar{p}((a, b),(c, d))=p(a, c) p(b, d)$. We first show that this is irreducible. Take any two states (a, b) and (c, d). We know that p is irreducible so for some n, m we have $p^{n}(a, c)>0$ and $p^{m}(b, d)>0$. Furthermore, since p is aperiodic, for some M for every $\ell \geq M, p^{\ell}(y, y)>0$ for $y \in\{a, b, c, d\}$. Then

$$
\bar{p}^{M+n+m}((a, b),(c, d))=p^{M+n+m}(a, c) p^{M+n+m}(b, d) \geq p^{n}(a, c) p^{M+m}(c, c) p^{m}(b, d) p^{M+n}(d, d)>0
$$

so \bar{p} is irreducible.
Using the definitions of stationary distributions, we see that $\bar{\pi}=\pi \pi$ is a stationary on \bar{p}. Since \bar{p} is irreducible, this means every state is positive recurrent, and thus recurrent. Let (y, y) be some state in the diagonal, we will show that $T_{(y, y)}$ the stopping time when $X \times Y=(y, y)$ is a.s. finite. Positive recurrent means that $E_{(y, y)} T_{(y, y)}<\infty$ and since we are irreducible the expected value from any starting position is still finite, meaning $T_{(y, y)}$ is a.s. finite too.
Now let T be the stopping time of hitting the diagonal where $X_{n}=Y_{n}$. Then $T<T_{(y, y)}<\infty$ a.s.. So in particular $P(T>n) \rightarrow 0$ as $n \rightarrow \infty$.
Now using the strong markov property,

$$
P\left(X_{n}=y\right)=P\left(X_{n}=y, T \leq n\right)+P\left(X_{n}=y, T>n\right) \leq P\left(Y_{n}=y\right)+P\left(X_{n}=y, T>n\right)
$$

and the same holds switching X_{n} and Y_{n} so that $\left|P\left(X_{n}=y\right)-P\left(Y_{n}=y\right)\right| \leq P\left(X_{n}=y, T>\right.$ $n)+P\left(Y_{n}=y, T>n\right)$. Summing over all states y we have

$$
\sum_{y}\left|P\left(X_{n}=y\right)-P\left(Y_{n}=y\right)\right|=\sum_{y}\left|p^{n}(x, y)-\pi(y)\right| \leq 2 P(T>n) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

