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Memorization (– key terms –)

Chapter 1: Algebraic Integers

1.1 Preliminaries/Gaussian Integers

1 units, irreducible elements, prime elements, associated elements

units are invertible, irreducible cannot be written as a product of two non-units, primes p | ab =⇒ p | a
or p | b, associated elements differ by a unit

2 F [α] = F (α) for field F and algebraic element α

F [x] is Euclidean Domain, so if f is minimal polynomial for α, then for g(a) ∈ F [a] with deg(g) <
deg(f) then f(x)h(x) + g(x)k(x) = 1 so then g(a)k(a) = 1 and so g(a) has an inverse.

3 Euclidean domain, UFD

Euclidean Domain: There is a ϕ : R − {0} → N such that for any α, β, we can find q, r such that
α = qβ + r and either r = 0 or ϕ(r) < ϕ(β)

UFD (unique factorization domain) - every nonzero nonunit element has a unique factorization into
prime (equiv to irreducible) elements

4 Noetherian, separable

Noetherian - ideals finiteily generated, ACC on ideals, nonempty collections of ideals have a maximal
element,

separable - polynomials when no repeat roots, extensions when all elements have separable min polys

Note: all K/Q are separable, because repeat root means that x − α | f(x), f ′(x) so min poly for α
divides f ′ (so its degree is less than f) and divides f (so not irreducible!)

5 primitive element theorem

finite separable extensions are primitive, i.e. L = K(α) for some α.

In particular, all number fields (finite ext over Q) are primitive!

6 structure theorem for finitely generated abelian groups

If G is a finitely generated (or just finite) abelian group then

G ∼= Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nmZ⊕ Zk

where Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nmZ is the torsion part and Zk is the torsion free part, G has rank
k. Can assume that n1 | n2 | · · · | nm.

7 structure theorem for modules over Dedekind Domains/PIDs

R a PID (or DD) and M a finitely generated R-module. Then there are nonzero ideals such that

M ∼= R/I1 ⊕R/I2 ⊕ · · · ⊕R/Im ⊕Rk

where Rk is the free part of the decomposition.

1.2 Integrality

8 algebraic number field, algebraic numbers and integers

algebraic number field = finite field extension K over Q
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algebraic numbers = elements of alg number field (i.e. roots of polynomials over Q)

algebraic integers = zeros of monic polynomials over Q

9 integral elements and extensions

setting A ⊂ B extension of rings

integral element = b ∈ B is integral over A if b is root of a monic equation degree n ≥ 1

integral ring = B is integral over A is all elements of B are integral over A.

10 integrally closed/closure, normalization

integral closure of A in B: Ā = {b ∈ B : b is integral over A} (is a ring)

A is integrally closed in B: Ā = A in B

normalization of A (A an integral domain): is the integral closure of A in its field of fractions

integrally closed (integral domain): A is integrally closed if it is integrally closed in its field of fractions

11 trace and norm

General formulation:

given L/K extension and x ∈ L, define the map Tx : α 7→ xα has some matrix representation in the
K-vector space

Trace: TrL/K(x) = Tr(Tx) and Norm NL/K(x) = det(Tx)

Galois formulation: (preferred definition)

L/K is separable (includes all number fields) and σ : L→ K varies of the K-embeddings of L,

fx(t) =
∏
σ(t− σx) (characteristic poly, has coefficients in K)

Trace: TrL/K(x) =
∑

σ σx

Norm: NL/K(x) =
∏
σ σx

12 basic properties of the trace and norm

Tr : L→ K and N : L∗ → K∗

Trace is additive, norm is multiplicative

They stack: Given K ⊂ L ⊂M , TrL/K ◦ TrM/L = TrM/K and similarly for norm (take galois view)

13 integral basis of a number field

an integral basis of B over A is a set ω1, . . . , ωn such that each b ∈ B can be written uniquely as an
A-linear combination of the ωis.

integral basis of B over A makes B a free A-module

14 discriminant of a basis/number field

discriminant of a basis α1, . . . , αn of separable ext L/K with σi embeddings L→ K:

d(α1, . . . , αn) = det((σiαj))
2 = det(TrL/K(αiαj))

discriminant of a number field:

Given K/Q with integral basis ω1, . . . , ωn of OK over Z,

dK = d(OK) = d(ω1, . . . , ωn)
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15 OK , integral basis, and discriminant of Q(
√
D), D square-free

OK =

{
Z[1+

√
D

2 ]

Z[
√
D]

{α1, α2} =

{
{1, 1+

√
D

2 }
{1,
√
D}

dK =

{
D D ≡ 1 mod 4

4D D ≡ 2, 3 mod 4

Key example to recall:
−1+

√
−3

2 is a cube root of unity, hence minimal polynomial divides x3 − 1 and is in OK for Q(
√
−3).

Hence −3 has half integers and gives the 1 mod 4 condition.

1.3 Ideals

16 Dedekind domain

Noetherian, integrally closed domain where every (nonzero) prime ideal is maximal

17 ideal operations

a | b ⇐⇒ b ⊆ a

a + b = {a+ b | a ∈ a, b ∈ b} =smallest ideal containing a and b = gcd(a, b)

a ∩ b = lcm(a, b)

ab = {
∑

i aibi | ai ∈ a, bi ∈ b}
18 Chinese Remainder Theorem

Given ideals a1, . . . , an in a Dedekind domain O, pairwise coprime (ai + aj = gcd(ai, aj) = (1) = O).

a := ∩ai O/a ∼=
⊕
i

O/ai

19 fractional ideals, integral ideals, and ideal inverses

fractional ideal is finitely generated O-submodule of K (field of fractions) (i.e. gen’d by finitely many
elements from K with coefficients in OK)

integral ideals of K are the usual ring ideals of O
a−1 = {x ∈ K : xa ⊆ O} inverse ideal

fractional ideals are quotients of 2 integral ideals

20 ideal group, JK

the abelian group of fractional ideals of K, with (1) identity and ideal inverses.

by unique factorization of fractional ideals (from integral ideals) JK is freely generated by prime ideals.

21 ideal class group, ClK

PK is the subgroup of fractional principal ideals

ClK = JK/PK

1.4 Lattices

22 lattice

subgroup of an n dimensional R-vector space of the form Zv1 + · · · + Zvm with linearly independent
vi’s in V .
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23 complete lattice, fundamental region

a lattice is complete if it has the same dimension as the vector space it lives in, i.e. |{v1, . . . , vm}| =
dimV .

fundamental region/mesh = coeffs in [0, 1) = {x1v1 + · · ·xmvm | 0 ≤ xi < 1} = Φ

24 discrete subgroup

a subgroup of a vector space is discrete if every point is isolated, i.e. has a neighborhood in V where
it is the only point in the subgroup in that neighborhood.

subgroup = lattice ⇐⇒ subgroup is discrete

25 volume of a lattice

given a lattice spanned by v1, . . . , vn

vol(Γ) = vol(Φ) = | det(〈vi, vj〉)|1/2

Example : Γ = Z[i] = Z + Zi

vol(Γ) =

∣∣∣∣det

(
〈1, 1〉 〈1, i〉
〈i, 1〉 〈i, i〉

)∣∣∣∣1/2 =

∣∣∣∣det

(
1 0
0 −1

)∣∣∣∣1/2 = |−1|1/2 = 1

26 centrally symmetric

defn: if x ∈ X then −x ∈ X
examples and nonexamples :

examples: unit circle

{(x, y) | x ∈ [−1, 1]} strip is centrally symmetric, {(x, y) | x ∈ [0, 1]} off-center strip is not

27 convex subset

defn: if x, y ∈ X then (x+ y)/2 ∈ X (their midpoint)

examples and nonexamples

example: unit circle, squares, rectangles, circles, triangles.

non-example: things that fold in on themselves or have gaps, like the union of two strips

28 Minkowski Lattice Point Theorem

Theorem Let Γ be a complete lattice in the Euclidean vector space X and X a centrally symmetric,
convex, subset of V . Suppose

vol(X) > 2n vol(Γ)

then X contains at least one nonzero lattice point γ ∈ Γ.

1.5 Minkowski Theory

29 Minkowski Space

K/Q number field, with n embeddings τ : K ↪→ C

KC =
∏
τ C (with K

j−→ KC by α 7→ (τ(α))τ )

Then complex conjugation acts on the indices τ 7→ τ as well as the elements, call this F

KR ⊆ KC, the Minkowski Space is the fixed subspace under F
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If ρ’s are the r real embeddings and σ’s are fixed representatives of the complex embedding pairs:

KR =

{
(zτ ) ∈

∏
τ

C | zρ ∈ R, zσ = zσ

}

KR = K ⊗Q R ∼=
∏
σ, realR×

∏
τ , imagC ∼= Rr+2s (r = real embeddings, 2s =complex embeddings)

30 volume of an ideal

a lattice in OK has volume
√
|dk|(OK : a) where dK is discriminant of the field and (OK : a) = |OK/a|

31 Minkowski Lattice Theorem for Ideals

If a 6= 0 is an integral ideal of K/Q and cτ > 0 for τ ∈ Hom(K,C) be real numbers with cτ = cτ and∏
τ

cτ > (2/π)s
√
|dK |(OK : a) (≈volume of cτ rectangle >2n vol of a lattice )

then there exists some a ∈ a (a 6= 0) such that

|τa| < cτ for all τ ∈ Hom(K,C) (there exists a nontrivial pt in the lattice ∩ rectangle )

Idea: Basically cτ ’s form a rectangle (centally sym and convex) in KR that intersects the lattice.

32 Minkowski Bound

Every non-zero ideal a of OK has a nonzero element a with

|NK/Q(a)| ≤ n!

nn

(
4

π

)s√
|dK |

where s is the number of complex embedding pairs and dK is discriminant of the field

1.6 The Class Number

33 absolute (ideal) norm

N(a) = (OK : a) and when a = (α) then N(a) = N((α)) = |NK/Q(α)| (hence the name ‘norm’)

34 basic properties of ideal absolute norm

multiplicative, so suffices to compute on prime ideals (shown by chinese remainder theorem on OK/a)

extend to fractional ideals to get homomorphism N : JK → R∗+ (postive reals with multiplication)

35 class number

JK = fractional ideals, and PK = principal fractional ideals, ClK = JK/PK

class number , hk = |ClK | = (JK : PK)

class number is finite!

36 example number field with class number 1 (trivial class group, PID)

Q(
√
−3) (dK = −3)or Q(

√
5) (dK = 5) [both are 1 mod 4]

all ideals are principal

37 example number field with class number > 1, (nontrivial class group)

K = Q(
√
−5) has class number 2 with the prime 2 ramifying as p22 where p is not principal (ramifies

because divides dK = −20 and not principal because no a2 + 5b2 = 2)
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38 Minkowski Bound on Ideal Norms in Class Group

Every class [a] ∈ ClK has an ideal with absolute norm

N(a) ≤ n!

nn

(
4

π

)s√
|dK |

in particular focus on powers of primes less than the bound.

39 Minkowski Lower Bound for Discriminant

K/Q with [K : Q] = n and s is the number of complex embedding pairs

nn

n!

(π
4

)s
≤
√
|dK |

1.7 Dirichlet’s Unit Theorem

40 Dirichlet’s Unit Theorem

O∗K ∼= µ(K)×Zr+s−1 where µ(K) is the roots of unity in K (finite group) and r is the number of real
embeddings, s is number of complex embeddings pairs.

41 fundamental units

The r + s− 1 units in K that generate the unit group of OK .

42 Multiplicative Minkowski set up

Hyperplane in
∏
τ R is the kernel of the trace map

K∗ K∗C =
∏
τ C∗

∏
τ R

Q∗ C∗ R

NK/Q

j:a7→(τa)τ

N

`:(aτ )τ 7→(log |aτ |)τ
Tr

log |·|

1.8 Extensions of Dedekind Domains

43 Dedekind Kummer Theorem

Dedekind Kummer Theorem: If K = Q(α) and OK = Z[α] (or general L/K) with f(x) the
minimal polynomial of α. Then however f(x) factors mod p is how p splits in OK .

Note: Generalizes when OK 6= Z[α] as long as p - [OK : Z[α]]

44 ramification index and inertia degree

Given L/K and OL over OK with p a prime in OL that splits as p = qe11 · · · qerr
ei is the ramification index of qi and fi = [OL/qi : OK/p] is the inertia degree.

45 split (completey), ramified/unramified, inert

split - multiple primes lying over (completely - n distinct primes lying over)

ramified - at least one dividing prime divides to a power, unramified - all primes divide only once

inert - remains prime (maximal inertia degree)
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46 State Quadratic Reciprocity.

Quadratc Reciprocity: Given two distinct odd primes p and q,(
p

q

)(
q

p

)
= (−1)

p−1
2 (−1)

q−1
2

Proof Idea:

Work in the field Q(ζp) and look at quadratic gauss sums, use these to express a quantity in two ways,
where equating gives the desired expression.

47 Legendre Symbol Formulas

For odd primes: (
−1

p

)
= (−1)

p−1
2

(
2

p

)
= (−1)

p2−1
8

Also in general (
a

p

)
≡ a

p−1
2 mod p

1.9 Hilbert’s Ramification Theory

48 Proof that Gal(L/K) acts transitively on the primes

If not,take p a prime lying over q, and suppose p 6= σp′ for all σ ∈ Gal(L/K) then by CRT choose
x ∈ p but not in σp′ for all σ ∈ Gal(L/K) (hence σ(x) /∈ p′ for all σ)

Taking norm of x, NL/K(x) =
∏
σ σ(x). Since x ∈ p and N(x) ∈ OK , x ∈ p ∩ OK = q.

But p′ ∩ OK = p ∩ OK = q and none of σ(x) ∈ p′ which is prime, contradiction!

49 ramification degree/inertia index in Galois extensions

since Gal(L/K) acts transitively on the primes, they have the same inertia index and ramification
degrees, so ei = e and fi = f and n = efr where r is the number of primes lying over p.

50 decomposition group

Given a prime p ∈ OL and G = Gal(L/K),

Gp = {σ ∈ G | σ(p) = p}

Properties: |Gp| = ef and Gσp = σGpσ
−1

51 inertia group

Ip = ker(Gp → Gal((OL/p)/(OK/p))

|Ip| = e

52 decomposition and inertia subfields

L/K Galois extension, with LD the decomposition subfield and LI the inertia subfield

[L : LI ] = e [LI : LD] = f [LD : K] = r

K → LD the prime splits completely

LD → LI the prime is inert

LI → L the prime is totally ramified
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1.10 Cyclotomic Fields

53 (primitive) nth roots of unity

ζn = e2πi/n, a root of xn − 1 that generates all other roots (i.e. isnt a root of some f(x) | xn − 1)

54 cyclotomic polynomials

the min poly for ζn = e2πi/n ⇐⇒ f | xn − 1 & f - xd − 1 ∀d < n ⇐⇒
∏

1≤k≤n
gcd(k,n)=1

(x− e2πik/n)

xn − 1 =
∏
d|n Φd(x)

When n = p is prime, Φp(x) = 1 + x+ x2 + · · ·+ xp−1

deg(Φn(x)) = ϕ(n) = #{1 ≤ d ≤ n : gcd(d, n) = 1} Euler Totient Function

Special case: ϕ(pk) = pk−1(p− 1) and is multiplicative on relatively prime pieces.

55 ring of integers and Galois group of Q(ζn)

OK = Z[ζn] Gal(Q(ζn)/Q) ∼= (Z/nZ)×

56 basic cyclotomic field facts

ζn = e2πi/n, a root of xn − 1 that generates all other roots (i.e. isnt a root of some f(x) | xn − 1)

OK = Z[ζn] Gal(Q(ζn)/Q) ∼= (Z/nZ)×

Disc(Q(ζp)/Q) = p` and more generally for ζn the discriminant is a product of primes in n.

Chapter 2: The Theory of Valuations

2.1 The p-adic Numbers

57 p-adic expansion for integers and rationals

for integers,
∑∞

k=0 akp
k for ak ∈ Z/pZ (can use finite sums for positive integers)

for fractions 1/h with (h, p) = 1 then 1 = hx+ yp for some x, y so (up to adjusting to be in [0, p− 1])

1
h = x+ 1

hyp = x+ (x+ 1
hyp)yp = x+ xyp+ xy2 1

hp
2 = x

∞∑
k=0

(yp)k

for a general fraction write as g
hp
−m for (g, p) = (h, p) = 1 then get expansion of g/h and shift by

p−m.

58 p-adic integers, p-adic numbers

Zp = {
∑∞

k=0 akp
k : ak = 0, 1, 2, . . . , p− 1}

Qp = {
∑∞

k=−m akp
k : ak = 0, 1, 2, . . . , p− 1}

59 Zp as a projective limit (ring structure)

Zp → Z/pnZ by truncation
∑∞

k=0 akp
k 7→

∑n−1
k=0 akp

k

and Z/pZ← Z/p2Z← · · · ← Z/pnZ← · · ·
yields a projective limit lim←k Z/pkZ with Zp

∼−→ lim←k Z/pkZ by uniqueness of representations.

In Zp multiplication is messy foiling of infinite sums, but in the limit multiplication is pointwise!
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2.2 The p-adic Absolute Value

60 p-adic valuation and absolute value

vp(a) = vp(p
m b
c) = m where (bc, p) = 1 |a|p = 1

pvp(a)
= 1

pm

61 product formula for Q

For any a ∈ Q∗ (nonzero)
∏
p |a|p = 1 where p =∞, 2, 3, 5, 7, . . . (all primes plus infinity)

2.3 Valuations

62 (multiplicative) valuation (properties and equivalence)

| · | : K → R satisfying

i |x| ≥ 0 and |x| = 0 ⇐⇒ x = 0

ii |xy| = |x||y|

iii |x+ y| ≤ |x|+ |y|

Equivalent: | · |1, | · |2 give same topology (d(x, y) = |x− y|) ⇐⇒ |x|1 = |x|s2 for some s > 0.

63 Approximation Theorem

Given | · |1, | · |2, . . . , | · |n be pairwise inequivalent valuations on a field K

and a1, a2, . . . , an ∈ K
Idea: We can approximate these arbitrarily well with respsect to each valuation

for all ε > 0 there exists some x ∈ K such that |x− ai|i < ε for all i = 1, 2, . . . , n

64 nonarchimedean and archimedean valuations

nonarchimedean: |n| is bounded for all n ∈ Z
(should be bounded by 1, since |1y| = |1||y| so |1| = 1 and |n| = |1 + · · ·+ 1| ≤ max{|1|} = 1)

archimedean: |n| is not bounded for all n ∈ Z

65 strong triangle inequality

Normal Triangle Inequality: |x+ y| ≤ |x|+ |y|
Strong Triangle Inequality: |x+ y| ≤ max{|x|, |y|}
Consequence: |x| 6= |y| then |x+ y| = max{|x|, |y|}
Valuation is nonarchimedean ⇐⇒ satisfies strong triangle inequality

66 Valuations on Q

The only (nontrivial) valuations are | · |p and | · |∞.

Proof Sketch:

Case: Nonarchimedean (will yield | · |p)
|n| ≤ 1 for all n ∈ Z, and for some prime p, |p| < 1 (otherwise trivial valuation)

Then pZ ⊂ {x ∈ Z : |x| < 1} but pZ maximal, so equality holds.

|a| = |pmb| = |pm||b| = |p|m = |a|sp for some s.

Case: Archimedean (will yield | · |∞)
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Claim |m|1/ log(m) = |n|1/ log(n) for all n,m > 1.

So C = |n|1/ log(n) = es implies |n| = C log(n) = es log(n) = |n|s∞ and extend to all positive rationals.

67 exponential (additive) valuations (properties and equivalence)

v : K → R ∪ {∞} such that

i v(x) =∞ ⇐⇒ x = 0

ii v(xy) = v(x) + v(y) (is additive)

iii v(x+ y) ≥ min{v(x), v(y)}

two valuations are equivalent if there is some s > 0 such that v(x) = su(x) for all x.

68 relationship between additive/multiplicative valuations

v(x) =⇒ |x| = q−v(x) for some q > 1

|x| =⇒ v(x) = − log |x|
69 valuation ring

O in K is valuation ring if for all x ∈ K either x ∈ O or x−1 ∈ O
maximal ideal is {x ∈ O : x−1 /∈ O}
70 discrete valuation, normalized valuation

discrete if there is a smallest positive value s, that is v(K∗) = sZ. normalized if s = 1

71 prime elements (w.r.t. normalized additive valuation)

if v(K∗) = Z then π ∈ O = {x ∈ K : v(x) ≥ 0} is prime if v(π) = 1

72 principal units and nth higher unit groups

U (1) = 1 + p are the principal units, U (n) = 1 + pn nth higher unit group

U (n+1)/U (n) ∼= O/p.

2.4 Completions

73 complete valued field

(K, | |) complete if every cauchy sequence (with respect to d(x, y) = |x− y|) converges to an element
in K.

74 completion w.r.t. a valuation

Given K with valuation | |, take R to be the ring of cauchy sequences in K with respect to | |, and
the maximal ideal m of nullsequences (converges to 0) then K̂ = R/m

K → K̂ by a 7→ (a, a, a, . . .)

extend the valuation | | to K̂ by defining |(xn)| = limn→∞ |xn|.
completions are unique (up to isomorphism)

75 Ostrowski’s Theorem

The only complete fields with respect to archimedean valuations are R and C (up to isomorphism)

76 Hensel’s Lemma

Hensel’s Lemma If f ∈ Zp[x] with some a0 ∈ Z/pZ such that f(a0) ≡ 0 mod p but f ′(a0) 6= 0
mod p then there is a lift α ∈ Zp of a0 such that f(α) = 0.
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Generalizations

Hensel’s Lemma V2 If f ∈ Zp[x] with some a0 ∈ Z/pZ such that |f(a0)|p < |f ′(a0)|2p then there is
a lift α ∈ Zp of a0 such that f(α) = 0.

Hensel’s Lemma V3 If f ∈ Zp[x] (with f 6≡ 0 mod p) with f̄ = ḡh̄ mod p, for relatively prime
polynomials ḡ, h̄ then there is a degree preserving lift g = ḡ mod p and h = h̄ mod p such that f = gh.

77 extension of valuation of complete field

If K is complete w.r.t. | | and L/K a finite algebraic extension, then | | extends uniquely to a valuation
on L and L is complete.

|α|L = n

√
|NL/K(α)|K

2.5 Local Fields

78 multiplicative group decomposition K∗

Given Qp we have the multiplicative group

Q∗p = (p)× µp−1 × (1 + (p)) ∼= Z⊕ Z/(p− 1)Z⊕ ZN
p

where (p) = {pk : k ∈ Z} and (1 + (p)) are the principal units. More generally K/Qp

K∗ = (π)× µq−1 × (1 + (π)) ∼= Z⊕ Z/(q − 1)Z⊕ Z/paZ⊕ Zdp

where π is a prime element (v(π) = 1) and q is the number of elements in the residue field (q = pf )

2.7 Unramified and Tamely Ramified Extensions

79 unramified extension

ramification of the unique prime ideal is 1

[L : K] = [OL/q : OK/p] (can be expressed in terms of decom and inertia subgroups to show that
|Ip| = e = 1)

80 maximal unramified subextension

composite of all unramified subextenstions (composite of unramified extensions is again unramified)

81 tamely ramified extension

the ramification index is coprime to p, the size of the residue field

82 maximal tamely ramified subextension

composite of all tamely ramified subextenstions (composite of tamely ramified extensions is again
tamely ramified)

2.8 Extensions of Valuations

83 extensions of valuations

L/K with valuation v on K, w is an extension of v if w(α) = v(α) for all α ∈ K.

each embedding τ : L→ Kv gives a valuation by w = v ◦ τ that is |x|w = |τx|v.
These valuations are the same for τ and τ ′ if there is an automorphism σ : Kv → Kv taking τ to τ ′.
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84 valuation extensions from minimal polynomial

If L = K(α) where α has minimal polynomial f ∈ K[x] then extension wi of v correspond to irreducible
factors of f in Kv (e.g. R, C, Qp)

85 fundamental identity for valuations

[L : K] =
∑

w|v[Lw : Kv] where w | v ranges over all valuations w extending v.

For Kv = Qp (v is discrete), [L : K] =
∑

w|v ewfw with ew = (w(L∗) : v(K∗)) and fw = [λw : κ]

86 tame inertia

tame inertia is cyclic, that is when p - |Iq| in extension K/Qp, then Iq is cyclic with order e.

Class Field Theory

87 Local Class Field Theory Statements

Let K be a local field. Then there is a local artin map φK that is a continuous surjection (K∗ with
topology induced by valuation and Gal(·/·) with Krull topology)

K∗
φK−−→ Gal(Kab/K)

where Kab is the maximal abelian extension of K. For any finite abelian extension L/K, the quotient
map Gal(Kab/K) → Gal(L/K) composes to get a surjective map φL/K : K∗ → Gal(L/K). If L/K
is unramified and π is any uniformizer for K, then φL/K(π) = Frobp ∈ Gal(L/K). Furthermore, the
kernel of φL/K is NL/K(L∗) and this is inclusion reversing by Galois theory.

As a consequence, φK induces an isomorphism when passed to the profinite completion. Furthermore,
φL/K(O∗K) gives the inertia subgroup of Gal(L/K).

88 Global Class Field Theory Statements

Let K be a global field. Let CK be the idele class group (IK/K
∗ where IK are the ideles, the unit

group of the adeles).

Then there is a global artin map φK that is a continuous surjection (CK with ideles topology and
Gal(·/·) with Krull topology)

CK
φK−−→ Gal(Kab/K)

where Kab is the maximal abelian extension of K. This again induces an isomoprhism on the profinite
completions.

For any finite abelian extension L/K, the quotient map Gal(Kab/K)→ Gal(L/K) composes to get a
surjective map φL/K : CK → Gal(L/K), which has kernel NL/K(CL).

f L/K is unramified and π is any uniformizer for K, then φL/K(1, . . . , 1, π, 1, . . .) = Frobp ∈ Gal(L/K).

Furthermore, φL/K(O∗p) gives the inertia subgroup for the ideal p of K in Gal(L/K).

89 Conductor

The conductor is defined for local fields as pn for the smallest n such that the local artin map φQ
is trivial on 1 + pnZp. The global conductor is the product of the local ones. If p is unramified, then
n = 0 so this is a finite product of the primes that ramify.

90 Hilbert Class Field

The Hilbert Class Field is the maximal unramified abelian extension of K, and if we denote it by
H, we have ClK ∼= Gal(H/K) where the left hand side is the ideal class group.
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91 Artin Reciprocity

Artin Reciprocity Statement: Let K/Q be an abelian extension. The primes of Q the split com-
pletely in K are determined by a congruence condition modulo the conductor fK/Q.

92 Adeles and Ideles

Let K/Q be a number field. Then adeles are AK =
∏′
ν Kν where ν ranges over all valuations of K,

Kν is the completion of K with respect to the valuation ν, and the
∏′ indicates a restricted product,

meaning if (αν) ∈ AK then for all but finitely many ν, αν ∈ O∗ν (i.e. lies in the valuation ring).

The ideles are the units within the adeles, i.e. IK = A∗K =
∏′
ν K

∗
ν .

93 Idele Class Group

For each valuation ν, there is an embedding K ↪→ Kν so combining these maps we have K∗ ↪→ IK .
Quotienting by the image of this injection we define the idele class group CK = IK/K∗.
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Algebraic Number Theory Quals Questions (– best questions –)

Chapter 1 - Algebraic Integers

1.1 Gaussian Integers

1 Show that the units of Z[i] are precisely those with N(α) = 1

α = a+ bi and unit means that αβ = 1 for some β. Norms are multiplicative, so

N(α)N(β) = N(1) = 1.

N(a+ bi) = (a+ bi)(a− bi) = a2 + b2. So N(Z[i]) ⊆ Z+ and only units are 1.

If N(α) = 1 then α = a+ bi and N(α) = a2 + b2 = 1. The only solutions to this are α = ±1,±i all of
which are units.

2 Compute the units of Z[
√
−d] for any integer d > 1.

α = a + b
√
−d and N(α) = a2 + db2. Since this is always a positive integer, the only units are those

with norm 1. Since d > 1, if b2 6= 0 this cannot happen, so b = 0 and a2 = 1, i.e. α = a = ±1.

3 Show that Z[i] is a UFD

Show that it is Euclidean by considering the Gaussian integers as a lattice.

Given α, β ∈ Z[i], want to find γ, ρ such that α = γβ + ρ and |ρ| < |β|.
Divide through by β, we have α/β in C and want γ + ρ/β with |ρ/β| < 1.

Sufficient that every point in C is less than 1 from some point in the Z[i] lattice. Picking the absolute
center of one of these lattice regions, the distance will be

√
1/2 < 1. And Euclidean implies UFD.

4 Determine the prime elements of Z[i]

Z[i] is a UFD, so primes are exactly the irreducible elements

Given a prime π, π | N(π) = p1 · · · pr so π divides some pi since π is prime. Then π · γ = p so
N(π) | N(p) = p2, hence N(π) = p, p2.

we can split this into 3 cases: p = 2, p ≡ 1, 3 mod 4.

p = 2. [α = 1 + i or associates]

Here we have α | 2 so N(α) | 22 = 4. The solutions here are ±1 ± i (which are all the same up to
associates, so represent by 1 + i). Then N(1 + i) = 1 + 1 = 2 = p. If 1 + i = βγ then N(β)N(γ) = 2
so one of these has norm 1 and is a unit.

p ≡ 1 mod 4. [α = a+ bi with a2 + b2 = p or associates]

Well p ≡ 1 mod 4 ⇐⇒ p = a2 + b2 for integers a, b. If α | p then N(α) = p, p2. If N(α) = p2 then α
is associate of p. However if N(α) = p then α = a+ bi (or some associate). This divides assoicates of
p so these are the only primes in this category.

p ≡ 3 mod 4. [α = p or associates]

Well p ≡ 1 mod 4 ⇐⇒ p = a2+b2 for integers a, b, so there are no α = a+bi with N(α) = a2+b2 = p.
If α | p then N(α) = p, p2. No α with N(α) = p, so only α are those with N(α) = p2 which are
associates of p.
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1.2 Integrality

5 Show that every UFD is integrally closed.

UFD = unique factorization domain

integrally closed = every element of the fraction field that satisfies a monic polynomial lies in the ring

Let R be UFD and α ∈ Frac(R) (i.e. α = r/s for r, s ∈ R) satisfying some monic polynomial

αn + rn−1α
n−1 + · · ·+ r1α+ r0 = 0

with ri ∈ R. Since we have unique factorization, we may assume no prime element p | r, s.
Rewriting α in terms of r and s and clearing denominators,

rn + rn−1r
n−1s+ · · · r1rsn−1 + r0s

n = 0

We can rearrange to get
rn = −s(rn−1rn−1 + · · · r1rsn−2 + r0s

n−1)

so some prime factor of s divides rn and thus divides r, a contradiction unless s is actually a unit in
which case α ∈ R as desired.

6 Is Z[
√

29] a PID?

K = Q(
√

29), since 29 ≡ 1 mod 4, OK = Z[1+
√
29

2 ]

PID =⇒ UFD =⇒ integrally closed so suffices to show this is not integrally closed.

Take 1+
√
29

2 ∈ OK but not in Z[
√

29] but is integral over it, hence not a PID.

7 What are some properties of integral elements/extensions?

finitely many elements b1, . . . , bn are inegral over A ⇐⇒ A[b1, . . . , bn] is a finitely generated A-module.

=⇒ Sums and products of integral elements are integral

=⇒ Integral extensions stack. If A ⊆ B is integral, and B ⊆ C is too, then A ⊆ C is also.

8 Find an integral basis for the quadratic field Q(
√
D) where D is a square-free integer

(D 6= 0, 1). Use these to compute the discriminant.

Integral Basis

K = Q(
√
D) has elements of the form q + r

√
D with q, r ∈ Q. To compute integral basis, we want

elements of ring of integers that generate OK over Z.

Ring of Integers: D ≡ 1 mod 4, OK = Z[
√
D] and D ≡ 2, 3 mod 4, OK = Z[1+

√
D

2 ]

Want q + r
√
D satisfying monic polynomial in Z. Well the minimal polynomial for q + r

√
D is

(x− (q + r
√
D))(x− (q − r

√
D)) = x2 − 2qx+ (q2 − r2D)

this is in Z[x] exactly when 2q, q2 − r2D ∈ Z.

[show that this implies that q, r ∈ Z]
2q ∈ Z =⇒ q ∈ 1

2Z (4q2 ∈ Z)
4q2 − 4r2D ∈ Z =⇒ 4r2D = (2r)2D ∈ Z =⇒ r ∈ 1

2Z (D square-free)

=⇒ (2q)2−(2r)2D
4 ∈ Z,so (2q)2 − (2r)2D ≡ 0 mod 4, cases by D

D ≡ 1 mod 4: {0, 1} − {0, 1} = 0 =⇒ 2q ≡ 2r ≡ 0, 1 so could have q, r both odd half integers
D ≡ 2, 3 mod 4: {0, 1} − {2, 3}{0, 1} = 0 =⇒ 2q = 2r = 0 so q, r ∈ Z.
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OK =

{
Z[1+

√
D

2 ] D ≡ 1 mod 4

Z[
√
D] D ≡ 2, 3 mod 4

Based on our formulation of the ring of integers, we have integral bases{
{1, 1+

√
D

2 } D ≡ 1 mod 4

{1,
√
D} D ≡ 2, 3 mod 4

Discriminant:

Computing discriminant of each of these. Embeddings
√
D 7→ ±

√
D.

D ≡ 1 mod 4

det

(
1 1+

√
D

2

1 1−
√
D

2

)2

= (1−
√
D

2 − 1+
√
D

2 )2 = D

D ≡ 2, 3 mod 4

det

(
1
√
D

1 −
√
D

)2

= (−
√
D −

√
D)2 = 4D

9 When can we garuantee an integral basis exists? What are cases where it does not?

If L/K is separable and A is a PID (e.g. Z ⊆ Q and K/Q algebraic number field)

When taking extensions of number fields L/K/Q we may not have that OK is a PID so there may not
be an integral basis for OL over OK .

Examples: OK = Z[
√
−5] is not a PID I = (2, 1 +

√
−5) so there should be some ring of integers over

OK that is not a free OK module and hence does not have an integral basis.

10 How is the discriminant defined when OL is not a free OK module (no integral basis)?

When in a case where there is no integral basis of OL over OK (i.e. OL is not a free OK module),
define the discriminant using ideals.

Let n = [L : K] = [OL : OK ] be the degree of the extension. Take all collections of ω1, . . . , ωn and
define the discriminant to be the ideal generated by the discriminants of all of these element collections.

How to compute?

Well given any α1, . . . , αn we know that (disc(αi)) ⊂ DiscL/K so DiscL/K | (disc(αi)) = pe11 · · · pemm .

Case: square-free factorization (ei = 1).

A prime divides the discriminant ⇐⇒ it ramifies, so check each pi for ramification in L/K and take
only the ramified ones to form the DiscL/K.

General:

Localize at each prime, where OK,p is now a PID (becasue it is a DVR) so we can compute the
discriminant in the usual manner and determine the power of the prime that divides DiscL/K.

11 Let K = Q(
√
−5), find OK and dK .

Short way: D = −5 ≡ −1 ≡ 3 mod 4 so then OK = Z[
√
−5] and d = 4D = −20.

Direct Computation:

Ring of integers are q + r
√
−5 with miniminal polynomial in Z[x].

Minimal polynomial will be (x− (q + r
√
−5))(x− (q − r

√
−5)) = x2 − 2qx+ q2 + 5r2

so then 2q, q2 + 5r2 ∈ Z =⇒ q = a/2 for a ∈ Z and 4q2 + 20r2 ∈ Z =⇒ 20r2 ∈ Z so r = b/2 (cannot
have 5 in denominator) for b ∈ Z.

q2 + 5r2 = a2

4 + 5 b
2

4 = a2+5b2

4 ∈ Z =⇒ a2 + 5b2 ≡ a2 + b2 ≡ 0 mod 4 so a ≡ b ≡ 0 mod 2
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hence q, r ∈ Z and so ring of integers is Z[
√
−5].

Taking an integral basis of {1,
√
−5} we have

dK = det

(
1
√
−5

1 −
√
−5

)2

= (−
√
−5−

√
−5)2 = (−2

√
−5)2 = 4 · −5 = −20

12 Show that {1, 3
√

2, 3
√

2
2} is an integral basis for K = Q( 3

√
2).

First show that these all lie in the ring of integers.

well they satisfy the monic polynomials x− 1, x3 − 2, x3 − 4 so all on OK .

Since [K : Q] = 3, suffices to show that these are linearly independent over Z

Well if not, then n+m 3
√

2+` 3
√

2
2

= 0 for some n,m, ` ∈ Z. This would provide a minimal polynomial for
3
√

2 of degree ≤ 2, a contradiction because its minimal polynomial is x3−2 (irreducible by Eisenstein’s
criterion)

13 The ring of integers OK is finitely generated as a Z-module, how would you show
this?

The map (x, y) 7→ Tr(xy) is a bilinear non-degenerate pairing.

[bilinear = Tr((ax+ b)y) = aTr(xy) + bTr(y), nondegenerate = ∀y, Tr(xy) = 0 =⇒ x = 0]

Nondegenerate bilinear pairings give dual bases. So let α1, . . . , αn be an integral basis for OK (guar-
anteed by Z PID, or take any basis and scale to be in OK .). Generate a dual basis α′1, . . . , α

′
n ∈ OK

of K/Q using the pairing (i.e. Tr(αiα
′
j) = δij).

Then let β ∈ OK so we can write β = q1α
′
1 + · · · qnα′n with qi ∈ Q. Take Tr(βαi) ∈ Z since the trace

maps OK → Z. But also Tr(βαi) = Tr(qiα
′
iαi) = qi ∈ Z so β ∈ Zα′1 + · · ·+ Zα′n and OK has a basis

over Z making it a Z module of the same dimension as K/Q.

14 Let f(x) = x3 − x2 − 2x + 1. Show that f is irreducible over Q. Then let K = Q[x]/f
and show that K is abelian (Hint: discriminant of f is 49).

f is irreducible: f monic so Gauss’s Lemma says irreducible if and only if irreducible over Z. Since
cubic, reducible implies a linear factor (root). But a root has to divide the constant term +1 so is
only ±1, both of which can be checked computationally and are not roots.

K is abelian. The discriminant of a polynomial is
∏
i 6=j(αi−αj)2 where the αi’s range over all roots of

f . Since Disc(f) = 49 = 72 we have that
∏
i 6=j(αi−αj) = 7 ∈ Z so this is fixed by all permutations of

the roots in the Galois group. Since deg(f) = 3, we know that Gal(f) ⊆ S3. Applying a permutation
to
∏
i 6=j(αi − αj) permutes the order of the product and multiplies by the sign of the permutation.

Since this is fixed, all permutations in the Galois group must be even, so Gal(f) = A3 = Z/3Z. Since
K is a nontrivial (deg 3) subextension of the splitting field for f , which has Galois group Z/3Z we see
that K is actually the splitting field and has the Galois group Z/3Z so is abelian.

1.3 Ideals

15 Give an example of a ring of integers without unique factorization.

OK = Z[
√
−5] (ring of integers for Q(

√
−5) because −5 ≡ 3 mod 4)

2 · 3 = (1 +
√
−5)(1−

√
−5) are two distinct factorizations into irreducibles.

Claim: all factors are irreducible. N(2) = 4, N(3) = 9, N(1 ±
√
−5) = 6. Would need an element

with N(α) = 2, 3 to divide any of these non-trivially.

N(α) = N(a+ b
√
−5) = a2 + 5b2 = 2, 3
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has no integer solutions. And we see from norms that none of these irreducibles divide each other (are
associates)

16 Sketch of unique factorization for ideals in a Dedekind Domain

start with integral ideals (i.e. not fractional)

Existence: take collection of those without prime factorization, noetherian gives a maximal element,
contained in some p (maximal prime). Multiplying by inverse gives a factorization of ap−1 which gives
a factorization of a.

Uniqueness: Primes in each factorization divide each other, but all are maximal giving equality.

This extends to fractional ideals, which have the form a/b for integral ideals a, b

17 Show that 18 = 2 · 3 · 3 = (1 +
√
−17)(1 −

√
−17) are two different decompositions into

irreducibles in OK for K = Q(
√
−17).

Norms are 4,9, 18, so to have divisors need norms of 2,3,6,9.

OK = Z[
√
−17] because −17 ≡ −1 ≡ 3 mod 4.

N(a+ b
√
−17) = a2 + 17b2.

No integer solutions for 2,3,6 but for 9, N(±3) = 9 is the only solution. But this does not divide
because 3(a+ b

√
−17) = 1±

√
−17 means that a, b are not integers, contradiction.

So these are all irreducibles forming distinct factorizations of 18.

18 Decompose 33 + 11
√
−7 into integral irreducibles in Q(

√
−7).

Well −7 ≡ 1 mod 4 so the ring of integers will be Z[1+
√
−7

2 ].

Well first we can factor out 11, so 33 + 11
√
−7 = 11 · (3 +

√
−7).

Is 11 irreducible? Well if not the some a+ b
√
−7 (or a+b

√
−7

2 ) has norm 11, so a2 + 7b2 = 11 which has
solutions when a = ±2 and b = ±1 so we have 11 = (2 +

√
−7)(2−

√
−7). These elements have prime

norm so must be irreducible. Can’t divide by 2 because the coefficients don’t have the same parity.

Is 3 +
√
−7 irreducible? Well N(3 +

√
−7) = 9 + 7 = 16 so could be divisible by an element with norm

2, 4, 8. This is because we can divide out by 2 since 3,1 have the same parity, so 3 +
√
−7 = 3+

√
−7

2 · 2.

Are these irreducible?? Well 3+
√
−7

2 has norm 4 (16/4). So any divisors have norm 2... 1
4(a2 +7b2) = 2

has solutions a = ±1 and b = ±1. Trying different combinations...

1+
√
−7

2
1+
√
−7

2 = 1−7+2
√
−7

4 = −3+1
√
−7

2
1−
√
−7

2
1−
√
−7

2 = 1−7−2
√
−7

4 = −3−1
√
−7

2

1−
√
−7

2
−1+

√
−7

2 = −1+7+2
√
−7

4 = 3+
√
−7

2

1+
√
−7

2
1−
√
−7

2 = 1+7+0
√
−7

4 = 2

So far:
33 + 11

√
−7 = (2 +

√
−7)(2−

√
−7)(1−

√
−7

2 )(−1+
√
−7

2 )(1+
√
−7

2 )(1−
√
−7

2 )

Check that these are all irreducible:

Norms: 11, 2. Both are prime so cannot be split into non associate decomposition.

19 In Z[
√
−3] let a = (2, 1 +

√
−3). Show that a 6= (2), but a2 = 2a. Conclude that ideals in

Z[
√
−3] do not factor uniquely into prime ideals.

Claim 1: a 6= (2)
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Since (2) ⊆ a STP that 1 +
√
−3 /∈ (2). Which is true because no integers satisfy 2c = 1.

Claim 2: a2 = (2)a

a2 = (4, 2 + 2
√
−3,−2 + 2

√
−3) 2a = (2)a = (4, 2 + 2

√
−3)

STP that −2 + 2
√
−3 ∈ 2a, and −2 + 2

√
−3 = 2(−1 + 1

√
−3) = 2(1 + 1

√
−3− 2) ∈ 2a

Claim 3: Z[
√
−3] does not have unique factorization of ideals.

If we had unique factorization of ideals, then expressing that factorization for a2 = 2a, we would be
able to cancel all the primes of a to get a = (2) which is a contradiction.

Note: This is okay because Z[
√
−3] is not the ring of integers of Q(

√
−3) (which is Z[1+

√
−3

2 ])

20 Given a number field K, what dedekind domains are contained in OK? What other
dedekind domains (not necessarily inside OK) can be constructed out of OK?

For any number field L/Q, since Z is a dedekind domain and integral closures of dedekind domains
are also, OL is a dedekind domain. So for K and any subextensions K/L/Q, OK and OL are dedekind
domains inside OK . In fact these will be the only ones, because any other dedekind domain R ⊆ OK
will have field of fractions Frac(R) ⊆ Frac(OK) = K so will be the ring of integers of the subextension
Frac(R)/Q.

For more dedekind domains, we turn to localization. Take any prime ideal p of OK and form the ring
OKp by localizing at the prime (invert all elements outside the prime). Since OK has dimension 1,
so does OKp. Furthermore, it has only two prime ideals (0) and p so all ideals are powers of p or
(0) on which the ACC holds so this is Noetherian. Finally, since OK is integrally closed in its field
of fractions and these rings have the same field of fractions, one can show that OKp is also integrally
closed and hence a dedekind domain. In fact, it will be a Discrete Valuation Ring (DVR) which is
stronger thana dedekind domain.

1.4 Lattices

21 Consider Γ = Z[i] ⊂ C. What is it’s fundamental region? Is it complete? Volume?

The fundamental region is [0, 1)× [0, i) or the unit square in the first quadrant of C.

it is complete because 1, i are the basis vectors and as an R-vector space C is 2-dimensional also. Also
complete because translates of the fundamental mesh (bounded region) by the lattice covers all of C.

volume: (intuitively this is a unit square so the volume should be 1)

vol(Γ) =

∣∣∣∣det

(
〈1, 1〉 〈1, i〉
〈i, 1〉 〈i, i〉

)∣∣∣∣1/2 =

∣∣∣∣det

(
1 0
0 −1

)∣∣∣∣1/2 = |−1|1/2 = 1

22 Give an example of a (finitely generated) subgroup which is not a lattice.

Take Z + Z
√

2 ⊆ R. Not discrete because multiples of
√

2 (being irrational) can be arbitrarily close
to integers.

23 State the Minkowski’s Lattice Point Theorem. Can the bound be improved?

Theorem Let Γ be a complete lattice in the Euclidean vector space V and X a centrally symmetric,
convex, subset of V . Suppose

vol(X) > 2n vol(Γ)

then X contains at least one nonzero lattice point γ ∈ Γ.

(note that if x,−x ∈ X and their midpoint is, then 0 ∈ X ∩ Γ for all lattices and X)
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The bound cannot be improved.

Find some complete lattice Γ and centrally symmetric and convex set X such that vol(X) = 2n vol(Γ)
with Γ ∩X = {0}.
Use Γ = Z[i] ⊂ C and X = {x + iy : −1 < x, y < 1} (open square centered at 0 with width 2, not
including the boundary!).

vol(Γ) = 1 vol(X) = 4 = 22 vol(Γ)

by picture X ∩ Γ = {0}.

1.5 Minkowski Theory

24 In what way is an ideal of OK a lattice? How can we compute the volume of an
(integral) ideal?

Taking the embedding j : K → KR of a number field into its Minkowski Space, then j(a) is a complete
lattice in KR given by Z combinations of the elements that generate a over Z (not OK).

Computing its volume using the Hermitian inner product and the discriminant of the basis, we get

vol(a) =
√
|dK |(OK : a)

where dK is the discriminant of K/Q and (OK : a) = |OK/a| is the index of the ideal.

25 State the Minkowski Bound. How is it derived?

Every ideal a 6= 0 in OK has some element a 6= 0 such that

|NK/Q(a)| ≤ n!
nn ( 4

π )s
√
|dK |(OK : a)

n = [K : Q], s = number of complex embeddings pairs,
dK =discriminant of K/Q, and (OK : a) = |OK/a|.
Derivation Sketch:

Minkowski Lattice point theorem gives conditions (by volume) for intersections between lattices and
centrally sym + convex regions.

Interpretting ideal as a lattice in the Minkowski space and choosing a clever centrally sym and convex
region, get a bound that yields a point in the ideal within the region which translates to a bound on
the norm of the element.

X = {(zτ ) :
∑

τ |zτ | < t} choose clever t

1.6 The Class Number

26 What is the class number of a number field? Prove that it is finite.

hK = |ClK | = (JK : PK)

Given a bound M , only finitely many ideals with N(a) ≤M , by considering their prime factorization
and knowing that N(p) = pf for some f and only finitely many primes p can lie over a particularly p.

Then use Minkowski bound to show that every class in ClK has an ideal with N(a) ≤ M so this
bounds the number of classes and thus the size of ClK .

Details:

(Idea: take ideal, invert and find element to make integral ideal,
then find an element by Minkowski bound, and invert ideal again to get back to same class)

27



Bound M = (2/π)s
√
|dk| fixed bound depending on the field.

Given any class of ideals in ClK , pick any ideal (may be fractional) a in the class and choose γ ∈ OK
so that γa−1 = b is an integral ideal. Then some α ∈ b such that |N(α)| ≤MN(b).

Define a1 = αb−1 = αγ−1a. This is in the same class we started with. Then

N(a1) = N(α)N(b−1) = |N(α)|N(b)−1 ≤M

27 Show that the magnitude of the discriminant, |dK |, goes to ∞ as [K : Q]→∞
Norm of an ideal is at least 1, so find an integral ideal in any class of the class group with 1 ≤ N(a) ≤M
then 1 ≤ n!

nn

(
4
π

)s√|dK | so a lower bound for the discriminant is

nn

n!

(π
4

)s
≤
√
|dK |

Take s as large as possible (since π/4 < 1) then s = n/2 and as n→∞ we have
(
π
4

)n/2 nn
n! →∞ (by

inductive argument) so the discriminant magnitude does too.

28 Show that the quadratic field with discriminant dK ∈ {5, 8} has trivial class group.

This case is real so s = 0 and r = 2

computing the (better) minkowski bound:

n!

nn

(
4

π

)s√
|dK | =

2

4

(
4

π

)0√
|dK | = 1

2

√
|dK | < 1

2 · 3 < 2

So every class has an integral ideal with norm less than 2 which as an integer will be 1, so it has no
prime ideal factors meaning it has the unit ideal (1) = OK in every class, so just one class.

29 Show that the quadratic field with discriminant dK ∈ {−3,−4,−7,−8} has trivial class
group.

This case is real so s = 1 and r = 0

computing the (better) minkowski bound:

n!

nn

(
4

π

)s√
|dK | =

2

4

(
4

π

)1√
|dK | =

1

2
· 4

π

√
|dK | =

2

π

√
|dK | = 2

√
|dK |
π

< 2

so every class has an integral ideal with norm 1 so again this is only the trivial class and so hK = 1.

30 How would you compute the class group for a (quadratic) number field?

First, compute discriminant and ring of integers.

Using this, compute the minkowski bound for the field

each class in ClK has an integral ideal with norm less than M , consider just prime ideals/norms
(building blocks)

for each rational prime, look at the possible factorizations in K that have norms less than M .

apply a “Dedkind Kummer” like Theorem to get the factorization of those primes in the ring of
integers.

When OK = Z[θ] with minimal polynomial f(x). Then however f(x) factors modulo p is how (p)
factors in OK . (actually gives an explicit construction for those primes too!)

determine which, if any, are principal or which are not principal (take N(α) = N and find solutions
or contradictions)

Find relations between them , e.g. (α) = p1p2 implies [p1]
−1 = [p2].
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31 Give a number field with non-trivial class group. How do you compute its class
group?

Example: K = Q(
√
−5) which has class group ClK ∼= Z/2Z.

Computation: Minkowski Bound MK bounds norms of ideals to consider for class group, depends
on discriminant and complex embedding count

each ideal class has integral ideal with N(a) ≤MK

Here dK = −20 and s = 1

MK =
n!

nn

(
4

π

)s√
|dK | =

2

4

4

π

√
20 =

2

π
2
√

5 = (1 + ε)(2 + ε) < 3

So need to check primes over 2. (Dedekind Kummer or discriminant)

Since 2 | dk it ramifies so in a quadratic field that means (2) = p2 and so [(1)], [p] generate ClK and
[p] has order 2.

Dedekind Kummer (for 3 for example) - Since OK = Z[
√
−5] with min poly x2 + 5 check how this

factors mod 3. No roots so irreducible so (3) is inert (hence principal)

32 Compute the class group for Q(
√
−5).

Discriminant:
−5 ≡ 3 mod 4 so this has discriminant dK = 4D = −20.

Minkowski Bound: (rememebder for [K : Q] = 2 complex, should be 1
2
4
π )

M = n!
nn

(
4
π

)s√|dK | = 2
4
4
π

√
20 = 2

π2
√

5 = (1 + ε)(2 + ε) < 3

So check all possible ideals with N(a) = 1, 2. N(a) = 1 =⇒ a = OK is the trivial class.

Suffices to check prime ideals which generate the class group

Check each rational prime with power less than MK and use Dedekind Kummer to determine how
these split in OK .

Check relations between non-principal ideal classes

Hence ClK = {[OK ], [p2]} and the class number is 2.

33 Compute the class group for Q(
√
−23).

Discriminant:
−23 ≡ −3 ≡ 1 mod 4 so this has discriminant dK = D = −23. [OK = Z[1+

√
−23
2 ]]

Minkowski Bound:
M = n!

nn

(
4
π

)s√|dK | = 2
4
4
π

√
23 = 2

π

√
23 ≤ 10

π < 4

So check all possible ideals with N(a) = 1, 2, 3. N(a) = 1 =⇒ a = OK is the trivial class.

Primes with norm 2 or 3 lie over (2) or (3) so we can check how these prime ideals split in OK using
Dedekind Kummer.

OK = Z[α] with α = 1+
√
−23
2 so need its minimal polynomial (can also take complex conjugate).

α2 = 1
4(1− 23 + 2

√
−23) = 1

2(−11 +
√
−23) = 1+

√
−23
2 − 6 = α− 6 =⇒ pα(x) = x2 − x+ 6

pα(x) = (x− α)(x− α) = (x− 1+
√
−23
2 )(x− 1−

√
−23
2 ) = x2 − x

(
1+
√
−23+1−

√
−23

2

)
+ 1+23

4 = x2 − x+ 6

For (2) and (3) look at how p(x) factors mod 2, 3.

Mod 2,3, p(x) = x2 − x+ 6 = x2 − x = x(x− 1) so (2) = p1p2 and (3) = q1q2.

If any of these are principal, then N(α) = 2, 3 for some α, which has no solutions.
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Need to look at relations for these...

piqj = (α) for some α? Well need N(α) = 2 · 3 = 6 = 1
4(a2 + 23b2) has solutions when a, b = ±1.

So (α) = p1q1 (up to relabeling) =⇒ [p1]
−1 = [p2] = [q1] and [p1] = [q1]

−1 = [q2]

{OK , [p1], [p2]}� ClK

Relations between these? Well we know [p1]
−1 = [p2] so if [p1] = [p2] then p2 = (α), and α has norm

4, but the only element with norm 4 is 2, and (2) 6= p21 so these are distinct classes (and each others
inverses).

And [p2]
2 has an ideal with norm 1,2,3, (actually 1,2) and we have found all of those so the group this

generates is Z/3Z.

Hence ClK = {[OK ], [p1], [p2]} and the class number is 3.

34 Show that |dK | = 1 if and only if K = Q.

If K = Q then dK = 1 by basis {1}.
Norm of an ideal is at least 1, so find an integral ideal in any class of the class group with 1 ≤ N(a) ≤M
then 1 ≤ n!

nn

(
4
π

)s√|dK | so a lower bound for the discriminant is

nn

n!

(π
4

)s
≤
√
|dK |

The smallest this can be is when s = n/2 but it can be shown (Stirling’s Formula), 1 < nn

n!

(
π
4

)n/2
when n > 1 giving a contradiction unless n = 1 i.e. K = Q.

1.7 Dirichlet’s Unit Theorem

35 What does Dirichlet’s Unit Theorem say? Give a sketch of the proof.

Dirichlet’s Unit Theorem: Gives the structure of the units in a number field, specifically

O∗K ∼= µ(K)× Zr+s−1

where r is the number of real embeddings and s is the number complex embedding pairs (so r+ s− 1
is d− 1 in the space of ‘independent’ embeddings)

Proof Sketch:

• Embed K into a multiplicative Minkowski Space, then using log | · | translate into an additive
version again.

• Look at the image of the group of units under this map which lands in a hyperplane of the space
of dimension r + s− 1.

• Show that the image is a complete lattice in this space and so gives Zr+s−1.

• The kernel of the map embedding is the (finite) group of roots of unity in K, µ(K) so the units
in K µ(K)× Zr+s−1 and the fundamental units are the ones that generate the free part.

36 Let K be the splitting field of x8 + 1. What is the rank of the unit group in OK?

Step 1: determine the splitting field and its embeddings

The roots of this polynomial are the primitive 16th roots of unity, adjoining any one gives the splitting
field, so [K : Q] = 8
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No real roots, so all complex pairs, and all embeddings are complex, 2s = [K : Q] = 8 so s = 4

Step 2: apply Dirichlet’s Unit theorem

The rank of the unit group is r + s− 1 = 0 + 4− 1 = 3 so there are 3 fundamental units.

1.8 Extensions of Dedekind Domains

37 How do intertia degrees and ramification degrees relate? Sketch a proof.

When L/K is separable, and p = qe11 · · · qerr . Let fi = [OL/q : OK/p] then

r∑
i=1

eifi = n = [L : K].

Note: If L/K Galois then ei and fi are the same for all primes, so n = ref .

Proof Sketch:

By Chinese Remainder Theorem

OL/pOL = OL/qe11 · · · q
er
r OL ∼= ⊕ri=1OL/q

ei
i OL

Computing dimensions of each as vector spaces over κ = OK/p...

dimκOL/pOL = n
by taking a basis of OL/pOL over OK/p and take representative elements and show that these are a
basis of L/K and so have size n.

dimκ⊕ri=1OL/q
ei
i OL =

∑r
i=1 eifi

take the descending chain OL/q ⊃ q/q2 ⊃ · · · qe−1/qe each one of which is isomorphic to OL/q
which has degree f . The dimension of the overall jump is the sum of these, of which there are e, so
dimκOL/qeii OL = eifi.

38 How does (2) split in the ring of integers of Q(
√

7)?

K/Q is primitive with p(x) = x2 − 7 minimal polynomial. Taken modulo 2, this splits as p(x) =
x2 − 1 = (x− 1)(x+ 1) = (x+ 1)2 so (2) ramifies as p21.

39 Consider K = Q(
√
−5). Which primes ramify, split or remain inert.

Well since this is quadratic and D = −5 ≡ 3 mod 4, the discriminant is 4D = −20 so the primes that
ramify are 2 and 5.

All other primes split completely or are inert, so using legendre symbol, p splits (completely) in OK
exactly when −20 is a square mod p. If −5 is a square mod p, then (p) splits (completely) in OK and
if not, then (p) is inert.

Well to flip this, use quadratic reciprocity which depends on p and 5 mod 4, but since 5 ≡ 1 mod 4,
always flips.

(−5/p) = (−1/p)(5/p) = (−1/p)(p/5) = (−1/p)(p/5)

If p ≡ 1 mod 4, then (−1/p) = 1 and if p ≡ 3 mod 4 then (−1/p) = −1.

The qquares mod 5 are 1, 4 so primes that are 1, 4 mod 5 and 1 mod 4 or are 2, 3 mod 5 and 3 mod
4 (that is 1, 9, 11, 19 mod 20) split and primes that are 2, 3 mod 5 and 1 mod 4 or 1, 4 mod 5 and 3
mod 4 (that is 3, 7, 13, 17 mod 20) are inert.
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40 Is 79 a square mod 445?

Well 445 is not prime so we can’t immediately apply quadratic reciprocity to reduce... but 79 will be
a square mod 445 if it is a square mod every prime of 445, and 445 = 5*89 (round up by 5 to 450
which is 5*90). Is 89 prime? Yes! (check, divisibility by 2,3,5,7) [79 also prime because not div by
2,3,5,7]

So need to compute (79/5) and (79/89). (79/5) = (4/5) = 1

(79/89) = (89/79)(−1)2k = (89/79) = (10/79) = (2/79)(5/79)

well (2/79) = (−1)
792−1

8 and 79 mod 16 = −1 so 792 − 1 = 0 mod 16 so (2/79) = 1

Next, (5/79) = (79/5)(−1)2k because 5 ≡ 1 mod 4 so = (79/5) = (4/5) = 1 so 79 is a square mod 89
too (by good ol chinese remainder theorem)

Since 79 is a square mod all the primes of 445 it is a square mod 445 too!

41 Let K = Q(α), where Irrα,Q(x) = x3 + 2x+ 1. What is the discriminant? Which primes
ramify? How do 2 and 3 split in OK?

The discriminant of f is −4b3− 27c2 = −59. Since Disc(f) = ±(OK : Z[α])2 Disc(K) and 59 is square
free, we have that Disc(K) = ±59. Since 59 is prime, the only ramified primes are 59. Could determine
the sign of the discriminant by reviewing the derivation of the discriminant of f and the discriminant
of K using the Vandermonde matrix and considing signs.

Well p(x) = x3 + 2x+ 1, look at the factorization of this polynomial mod 2 and 3.

Mod 2: Check for roots, p(x) = x3 + 1 has root for −1, so x3 + 1 = (x− 1)(x2 +x+ 1). The quadratic
has no roots, so this is the decomposition. Hence (2) = p1p2 where f1 = 1 and f2 = 2.

Mod 3: Check for roots, p(x) = x3 + 2x + 1, 0 not a root, 1 + 2 + 1 = 1 not a root, 23 + 2 ∗ 2 + 1 =
8 + 4 + 1 = 13 = 1 not a root, so this is irreducible and so (3) is inert with inertia degree 3.

42 Show that 2 splits completely in Q(
√

17) but remains inert in Q(
√

13).

Take x2 − 2 the minimal polynomial for 2 and consider how it factors mod 17, well it splits if 2 is a
square mod 17, that is (2/17) = 1. well mod 17, the squares are 1, 4, 9, 25 = 8, 36 = 19 = 2 . . . so 2 is
a square which means this polynomial splits and so does (2), which in a quadratic extension is split
completely.

Now for Q(
√

13), we can show this does not split and does not ramify. Again we consider squares, now
mod 13, 1, 4, 9, 16 = 3, 25 = 12, 36 = 10, 47 = 21 = 8 (only need to check up to halfway) and none of
these are 2 so 2 does not split. The discriminant for Q(

√
13)... D = 13 ≡ 1 mod 4 so the discriminant

is D = 13 and since 2 does not divide the discriminant it is unramified, so (2) is inert in Q(
√

13).

1.9 Hilbert’s Ramification Theory

43 What are the decomposition and inertia subgroups of Gal(K/Q)? How does prime
splitting decompose in the relevant subfields?

Gp decomposition group is subgroup of size ef of the automorphisms that fix p. (has index r, the
number of conjugates of p)

Ip is the kernel of the map Gp → Gal(OK/p/Z/pZ).

By definition then, Gp/Ip ∼= Gal(OK/p/Z/pZ) is the Galois group of a finite field extension, so is
cyclic.
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totally ramified pe1p
e
2 · · · per L Gal(L/LI) = Ip

inert p1p2 · · · pr LI Gal(L/LD) = Gp

split completely p1p2 · · · pr LD

p K

e

f

r

44 Let K be the splitting field of x4 + 1. What is Gal(K/Q)? Which primes ramify in K?
For which primes p is x4 + 1 irreducible mod p?

The roots are primitive 8th roots of unity, so K = Q(ζ8). As a splitting field, it is Galois.

The automorphisms send ζ8 to other primitive roots of unity, so ζ8, ζ
3
8 , ζ

5
8 , ζ

7
8 and the Gal(Q(ζ8)/Q) ∼=

(Z/8Z)× ∼= (Z/2Z)2

Primes that ramify must divide the discriminant, and the discriminant for ζ8 will be a power of 2, so
2 ramifies (can determine explicitly because (2) = (1 + i)2 and i = ζ48 )

For p, Dedekind-Kummer says that (p) splits in K exactly as x4 + 1 splits mod p. So need the primes
p such that (p) is inert in K. If p is inert, then e = 1 and Gp the decomposition group is the whole of
Gal(K/Q). However since e = 1 the inertia group is trivial and Gp/Ip ∼= Gal(OK/p/Z/pZ) is a Galois
group of an extension of finite fields, which is cyclic. However Gal(K/Q) is not cyclic, so no primes
are inert and so x4 + 1 is reducible mod p for all p.

45 Let K/Q be a finite Galois extension with Galois group G. For each prime p let Ip
be its inertia group, show that the Ip generate G.

Let H = 〈Ip〉 ≤ G be a subgroup, giving a subextension L/Q. For each prime p ∈ Q, its ramification
in L is the size of its inertia subgroup for any prime in L lying over p which is the image of Ip in
G/H which will be trivial since Ip ⊆ H. Thus no primes ramify in L/Q, but the only such extension
satisfying this is L = Q and so G/H = {1}, meaning that H = G.

1.10 Cyclotomic Fields

46 Which cyclotomic fields have finite unit groups?

Want to apply Diriclet’s Theorem to determine when rank (r + s− 1) is 0.

Aside from n = 1, 2 (ζ1 = 1, ζ2 = −1) these are all complex fields with r = 0.

n = 1, 2 then K = Q and so r = 1, s = 0 and the rank is 0.

n > 2 Then r = 0 and s = [K : Q]/2 = ϕ(n)/2, and we need s = 1 so ϕ(n) = 2

ϕ(pe11 · · · p
ek
k ) =

∏
i p
ek−1
i (pi − 1) so only allowed prime divisors for n are 2, 3.

ϕ(2) = 1, ϕ(4) = 2, ϕ(8) = 4 too big!

ϕ(3) = 2, ϕ(9) = 6 too big!

already did n = 2

n = 3, 4, 6 also work!

finite unit group ⇐⇒ n ∈ {1, 2, 3, 4, 6}
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47 What can you say about subfields of Q(ζp) that are quadratic over Q?

Well K = Q(
√
d) for some d will have discriminant d or 4d and must divide dQ(ζp) = p∗ by ramification.

We must have p > 2 for Q(ζp) 6= Q, so then p | d and can’t have 4p so the unique quadratic field is:

K =

{
Q(
√
p) p ≡ 1 mod 4

Q(
√
−p) p ≡ 3 mod 4

48 Let K be the splitting field of x8 + 1. What is Gal(K/Q)? Which primes ramify?
What are the quadratic subextensions? For which primes is x8 + 1 irreducible in Fp?
What is the rank of the unit group?

Well the roots are primitive 16th roots of unity so adjoining any one creates splitting field, hence
K = Q(ζ16) and [K : Q] = deg Φ16(x) = ϕ(16) = 23(2− 1) = 8.

Gal(Q(ζ16)/Q) ∼= (Z/16Z)× ∼= Z/4Z× Z/2Z (can deduce by considering order of elements)

Ramified primes? Well ramified ⇐⇒ divide dk and since 16 = 24 the discriminant will also be a
power of 2, so only 2 ramifies.

Quadratic subextensions? Well only 2 can ramify, so the possible quadratic fields are Q(
√
−1) and

Q(
√

2). How many should there be? Well quad subext means an index 2 subgorup of Gal(K/Q) of
which there are two (Z/4Z and Z/2Z× Z/2Z) so these are the two sub-extensions.

x8 + 1 irreducible mod p? For p, Dedekind-Kummer says that (p) splits in K exactly as x8 + 1 splits
mod p. So need the primes p such that (p) is inert in K. If p is inert, then e = 1 and Gp the
decomposition group is the whole of Gal(K/Q). However since e = 1 the inertia group is trivial and
Gp/Ip ∼= Gal(OK/p/Z/pZ) is a Galois group of an extension of finite fields, which is cyclic. However
Gal(K/Q) is not cyclic, so no primes are inert and so x8 + 1 is reducible mod p for all p.

Rank of O×K? Well n = 8 and all roots are imaginary, so s = 4 and r = 0 (counting embeddings) and
by Dirichlet’s Unit Theorem, rank is r + s− 1 = 4− 1 = 3.

49 Show that x8 + 1 is irreducible over Q.

Cyclotomic polynomial trick here, x8 + 1 irreducible ⇐⇒ (y + 1)8 + 1 is irreducible, which satisfies
Eisenstein’s Criterion.
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Chapter 2 - Theory of Valuations

2.1 The p-adic Numbers

50 Does 2 have a square root in Z7? [pre-Hensel’s]

x2 = 2 in Z7:

Z7
∼= lim←k Z/7kZ with pointwise multiplication. Take 2 ∈ Zp which maps to (2, 2, 2, . . .) in the

projective limit. Suffices to find a square-root in the limit.

Claim: 2 is a square mod 7k for all k.
Proof: 2 = 32 mod 7 and for higher powers take the extension of the Legendre Symbol which is
multiplicative so for evens always 1 and for odd k same as (2/7) = 1 so always has a square root.

Take the square root in the projective limit and map it back to Z7.

2.2 The p-adic Absolute Value

51 What is the product formula for Q? Prove it.

Product Formula: For a ∈ Q∗ and p ranging over all primes and ∞,
∏
p |a|p = 1.

Proof:

a = ±
∏
p 6=∞

pvp(a) =
a

|a|∞

∏
p6=∞
|a|−1p = a

(∏
p

|a|p

)−1
=⇒

∏
p

|a|p = 1

52 How can we construct Qp using the p-adic absolute value?

|x − y|p gives a metric on Q, analagous to R, take the Cauchy Sequences w.r.t this metric and mod
out by the nullsequences that approach 0 in the metric.

Then |x|p = limn→∞ |xn|p extends the metric to Qp.

As with R, this is complete (every Cauchy Sequence in Qp converges to a point in Qp), and Zp = {x :
|x| ≤ 1}.
This agrees with our initial construction of Qp and Zp only sums are no longer formal but actually
converge w.r.t. the new metric.

53 What is the structure of Zp?

only one prime ideal, pZp = {x ∈ Qp : vp(x) ≥ 1} all ideals principal of the form pnZp.
Zp/pnZp ∼= Z/pnZ and again, Zp ∼= lim←k Z/pkZ.

2.3 Valuations

54 How do the Approximation Theorem and Chinese Remainder Theorem relate?

Given primes p1, p2, . . . , pn they have corresponding valuations | · |p1 , . . . , | · |pn .

Chinese Remainder Theorem: Define N = pk11 · · · pknn for some ki. Then

Z/NZ = Z/
∏
i

pkii Z ∼=
∏
i

Z/pkii Z.

Approximation Theorem: Given a1, . . . , an ∈ Z, there exists some x ∈ Q such that |x− ai|i < ε.

Approximation =⇒ CRT:
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Let ε = mini p
−ki
i and suppose x ∈ Z (this is true for Strong Approx) then |x − ai|i < ε means that

x ≡ ai mod pkii . So then x 7→ x̄ ∈ Z/NZ is the desired element for CRT.

55 What are all the valuations on Q? How do you know?

Only possible ones are | · |p for all primes p and | · |∞ the usual absolute value (and the trivial one
which is ignored)

The first are all nonarchimedean, so if we had some other nonarchimedean valuation || · || then ||n|| ≤ 1
for all n ∈ Z. If nontrivial, then some integer ||n|| < 1 which by prime factorization means some
||p|| < 1. Take a = {a ∈ Z : ||a|| < 1} then by maximality, a = pZ and then we can show that
|| · || = | · |sp for some s.

In the archimedean case there is a trick where ||n||1/ logn is constant for all n ∈ Z so then use this to
write ||n|| = (||n||1/ log(n))log(n) = es log(n) = |n|s∞ for some s > 0.

2.4 Completions

56 State Hensel’s Lemma. Sketch a proof. What are some generalizations?

Hensel’s Lemma If f ∈ Zp[x] with some a0 ∈ Z/pZ such that f(a0) ≡ 0 mod p but f ′(a0) 6= 0
mod p then there is a lift α ∈ Zp of a0 such that f(α) = 0.

Proof Sketch

Uses Netwon’s Method, take f ′(a0) = f(a0)
a0−a1 so a1 = a0 − f(a0)

f ′(a0)
. Iterate this process and use the

conditions on f(a0) and f ′(a0) to show that this converges to α a root of f .

Generalizations

Hensel’s Lemma V2 If f ∈ Zp[x] with some a0 ∈ Z/pZ such that |f(a0)|p < |f ′(a0)|2p then there is
a lift α ∈ Zp of a0 such that f(α) = 0.

Hensel’s Lemma V3 If f ∈ Zp[x] (with f 6≡ 0 mod p) with f̄ = ḡh̄ mod p, for relatively prime
polynomials ḡ, h̄ then there is a degree preserving lift g = ḡ mod p and h = h̄ mod p such that f = gh.

57 Does 5 have a square root in Q3? What about 7?

Want to find solutions to f(x) = x2 − 5 in Q3.

Well f(x) ≡ x2 + 1 which has no roots in Z/3Z. If f(α) = 0 then |α|23 = |5|3 ≤ 1, so |α|3 ≤ 1 hence
α ∈ Z3.

If α ∈ Z3 were a solution, then a0 ≡ α mod 3 would be a solution to f(x) mod 3, so there is no square
root of Q3.

On the other hand, f(x) = x2 − 7 ≡ x2 − 1 = (x + 1)(x − 1) in Z/3Z so there are roots here. There
are simple because they are distinct roots, so they lift to roots of 7 in Z3. (f ′(x) = 2x and ±2 6= 0 in
Z/3Z)

2.5 Local Fields

58 What are local fields? Let K be a local field. Show that all ideals are powers of the
maximal ideal.

Local Fields are those that are complete with respect to a discrete valuation (outputs in Z ∪ {∞})
and has finite residue field.

Alternative definition of local fields: finite extensions of Qp or Fp((t)).
Maximal ideals are then {α : ν(α > 0}.
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Take any ideal a of the valuation ring ({α : ν(α) ≥ 0}). Then by the discreteness of the valuation,
there exists a minimum n such that ν(α) = n for α ∈ a. We will show that a = (π)n, where π is an
uniformizer. If α has valuation n, then α = πnu for a unit u. Thus πn ∈ a by inverting the unit. Then
all (πn) = (πnu) ⊆ a. Furthermore, any other β ∈ a has decompositon β = πmu for some m ≥ n so
β = πn(πm−nu) ∈ (πn) so a = (π)n.

59 Which roots of unity lie in Q∗2? Q∗7? How would you determine it for a general Q∗p?

Suppose ζ is an nth root of unity in Q∗p, then ‖ζ‖np = ‖ζn‖p = ‖1‖p = 1 so ‖ζ‖p = 1 and thus ζ ∈ Z∗p.
The structure of Z∗p is Zp×Z/p− 1Z when p is odd or Zp×Z/2Z when p = 2 with additive structures
on both components. If ζ ∈ Z∗p then there is some element (α, a) ∈ Zp × Z/MZ with order n where
M = p− 1, 2 depending on the case. Since Zp is an integral domain nα = 0 implies that α = 0 so we
have that a has order n in Z/MZ so then n | M . Conversly, for any n | M , an element a ∈ Z/MZ
with order n allows us to choose (0, a) ∈ Z∗p with order exaclty n so we see that n | M = p− 1, 2 is a
necesary and sufficient condition for ζn ∈ Z∗p.
For Q∗2 we have only n = 1, 2 | 2 so the roots of unity are ±1.

For Q∗7 we have n = 1, 2, 3, 6 | 6 = 7− 1 so we have ζk6 for k = 0, 1, 2, 3, 4, 5, 6 in Q∗7.

2.7 Unramified and Tamely Ramified Extensions

60 Let f = X3 −X2 − 2X + 1. Show that f is irreducible over Q. Let K = Q[X]/f . Show
that K is abelian. You can use the fact that the discriminant of f is 49. Find the
discriminant of K and its ring of integers. Which non-archimedean primes ramify
in K? Does the infinite prime ramify in K?

First, f is cubic, so reducible ⇐⇒ it has a root in Q. Gauss’s Lemma says f reducible over Q ⇐⇒
f reducible over Z when f is primitive (in particular, when monic) Over Z, the constant term is the
product of roots, so possible roots are only ±1, neither of which satisfies f(x) = 0, so f is irreducible.

Since f is irreducible, K = Q[x]/f is a degree 3 extension, as long as K/Q is Galois, this is abelian
with Gal(K/Q) ∼= Z/3Z. We will suppose that L is the splitting field of f , and show that [L : Q] = 3,
and so K/Q is Galois.

Consider the discriminant Disc(f) = ((α1 − α2)(α1 − α3)(α2 − α3))
2 = δ2. Gal(L/Q) ⊂ S3, so either

S3 or Z/3Z. If we have an odd permutation, then δ 7→ −δ and even permutations fix δ. Since
Disc(f) = 49 = 72 and ±7 ∈ Q, δ = ±7 is fixed by all permutations in the Galois group, hence the
Galois group is A3 = Z/3Z. Thus L = K and so K/Q is Galois.

Knowing that Disc(f) = 49, want to find DiscK/Q. Well they are related by

Disc(f) = DiscZ[α]/Z = (OK : Z[α])2 DiscK/Q

so either DiscK/Q = 49 or DiscK/Q = 1, but then K = Q contradiction to irreduciblity, so
DiscK/Q = 49 and OK = Z[α].

Primes ramify if and only if they divide DiscK/Q, so only 7 ramifies.

For the infinite place, we need to know if K ⊂ R or not. If not, then f has a complex conjugate pair
of roots, let α, β, β be the roots, then

Disc(f) =
∏
i 6=j

(αi − αj) = (α− β)2(α− β)2(β − β)2 =
(

(α− β)(α− β)
)2

(β − β)2 = |α− β|4(β − β)2

If β = a+ bi then β−β = 2bi so (β−β)2 = −4b2 < 0. Then Disc(f) < 0, since Disc(f) = 49 we know
that K ⊂ R and so ∞ does not ramify (into complex conjugation).
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2.8 Extensions of Valuations

61 Let K = Q[α] where α is a root of xn − 2 for n ≥ 2. What is [K : Q]? How many
ways can the archimedean absolute value on Q be extended? What about the 2-adic
absolute value? What are the rank and torsion subgroup of O∗K?

(a) f(x) = xn − 2 is irreducible by Eisenstein, so [K : Q] = deg(f) = n.

(b) Each embedding τ : K → C gives a valuation of K by |α| = |τα|.
From this formulation, we see that complex embedding pairs each give 1 valuation and real embeddings
give their own.

n even: 2 real embeddings α 7→ ± n
√

2 and s = 1
2(n− r) = n−2

2

n odd: only 1 real embedding α 7→ n
√

2 and s = 1
2(n− r) = n−1

2

and number of embeddings is r + s.

(c) Each prime above (2) gives an extension of | |2, but (2) = ( n
√

2)n is totally ramified so only one
extension of | |2.
(d) Dirichlet’s Unit Theorem gives the rank as r + s− 1 using the same r, s by parity of n above.

For the torsion part, we need to find µ(K).

If ζn ∈ K then every prime divisor p | n yields ζp ∈ K. For odd p, this gives a subextension Q(ζp)
with discriminant p∗ but (2) does not ramify here, and yet it totally ramified so ζp /∈ K for odd p.

Consider the case of ζ2n , we know that ζ2 ∈ K because ±1 ∈ Q so if ζ4 /∈ K then µ(K) = ±1. Since
Q(ζ4) = Q(i), we consider the extension of | |∞. Since Q(i) has only complex embeddings, these
extend to complex embeddings in K but we know there is at least one real embedding, so ζ4 /∈ K and
hence ζ2n /∈ K for n ≥ 2.

62 Write down a polynomial f over Q3 such that Q3[x]/(f) is a totally ramified quartic
extension of Q3.

Let f(x) = x4 − 3. This is irreducible by Eisenstein’s, so adjoining a root gives a quartic extension.
Furthermore, α the root, satisfies α4 = 3, so the ideal (α)4 = (3) in OK , meaning that the extension
is totally ramified.

63 What are all the valuations of Q(i)?

Archimedean: the real abs val ramifies as as the complex absolute value |α| = |α|2C
Nonarchimedean:

For each prime p, determine how it splits in OK . If p = 2 it ramifies, so (2) = p2 and we have the
valuation | |p.
If p odd, then it does not ramify, so either splits or inert. Splitting happens when x2 + 1 splits mod
p, that is when −1 is a square mod p,

(
−1
p

)
= (−1)

p−1
2 =

{
1 p ≡ 1 mod 4

−1 p ≡ 3 mod 4

In the split case, we get two valuations and in the inert case we have the same p-adic valuation as
before, | |p.
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Class Field Theory Statements

64 State Local Class Field Theory. What properties uniquely determine the map?

Local Class Field Theory Statement: Let K be a local field. Then there is a local artin map
φK that is a continuous surjection (K∗ with topology induced by valuation and Gal(·/·) with Krull
topology)

K∗
φK−−→ Gal(Kab/K)

where Kab is the maximal abelian extension of K. For any finite abelian extension L/K, the quotient
map Gal(Kab/K) → Gal(L/K) composes to get a surjective map φL/K : K∗ → Gal(L/K). If L/K
is unramified and π is any uniformizer for K, then φL/K(π) = Frobp ∈ Gal(L/K). Furthermore, the
kernel of φL/K is NL/K(L∗) and this is inclusion reversing by Galois theory.

As a consequence, φK induces an isomorphism when passed to the profinite completion. Furthermore,
φL/K(O∗K) gives the inertia subgroup of Gal(L/K).

Uniqueness: φK is the unique continuous homomorphism K∗ → Gal(Kab/K) such that every finite
unramified L/K and uniformizer π of K φL/K(π) is the Frobenious element of Gal(L/K) and that
φL/K has kernel N(L∗) inducing the desired isomorphism with the Galois group.

65 State Global Class Field Theory. How does it relate to the local maps? What needs
to be checked to show that the composition is well defined on CK?

Global Class Field Theory Statement: Let K be a global field. Let CK be the idele class group
(IK/K

∗ where IK are the ideles, the unit group of the adeles).

Then there is a global artin map φK that is a continuous surjection (CK with ideles topology and
Gal(·/·) with Krull topology)

CK
φK−−→ Gal(Kab/K)

where Kab is the maximal abelian extension of K. This again induces an isomoprhism on the profinite
completions.

For any finite abelian extension L/K, the quotient map Gal(Kab/K)→ Gal(L/K) composes to get a
surjective map φL/K : CK → Gal(L/K), which has kernel NL/K(CL).

f L/K is unramified and π is any uniformizer for K, then φL/K(1, . . . , 1, π, 1, . . .) = Frobp ∈ Gal(L/K).

Furthermore, φL/K(O∗p) gives the inertia subgroup for the ideal p of K in Gal(L/K).

Local to Global: The global map when restricted to Kv ↪→ CK gives back the local artin map of
Kv. Conversely, we could construct the global map by taking the product of the local maps on each
Kv. To make sure this is compatible with our defintion, this first needs to give a finite product so all
but finitely many maps must be trivial. Furthermore, the product of these maps must also be trivial
on the image of K∗ ↪→ CK since this lies in the quotient of the global map.

66 What is Artin Reciprocity? How is Quadratic Reciprocity a special case?

Artin Reciprocity Statement: Let K/Q be an abelian extension. The primes of Q the split com-
pletely in K are determined by a congruence condition modulo the conductor fK/Q.

Note: the conductor is defined for local fields as pn for the smallest n such that the local artin map
φQ is trivial on 1 + pnZp. The global conductor is the product of the local ones. If p is unramified,
then n = 0 so this is a finite product of the primes that ramify.

Quadratic Reciprocity: While typically stated in terms of Legendre symbols, this statement could
be retooled to say that the primes that split (completely) in Q(

√
q) are determined by a congruence

condition modulo Disc(Q(
√
q)). In this case, the discriminant is also the conductor (in magnitude,
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when ignoring the possible infinite place), so the Artin Reciprocity statement generalizes quadratic
extensions to any finite abelian extension.

67 Let L/K be an extension of number fields in which almost all primes (all but finitely
many) in K split completely in L. What can we conclude about L? Hint: Chebotarev
Density.

Claim: L = K when almost all primes split completely.

We begin by assuming that L/K is Galois and then extend to the non-Galois case. If a prime ideal p
in K splits completely, then it is unramified and thus has a frobenius automorphism ϕq ∈ Gal(L/K)
for each q lying over p (or equivalently a uniquely defined conjugacy class of frobenius elements for
p). These generate the decomposition group for each q which is trivial since p splits completely. Thus
ϕq = 1 for all q. Conversely, if there is a q over p with frobenius ϕq = 1 then the decomposition group
is trivial and p splits completely.

Chebotarev density says that

density (primes p in K with some q | p and ϕq = 1) =
#{τ1τ−1}

# Gal(L/K)
=

1

[L : K]

Since we have shown the left hand side is also the density of primes that split completely, if almost all
primes split completely this density is 1, making [L : K] = 1, i.e. L = K.

Now in the non-Galois case, take the Galois closure M of L over K. Then from Galois theory primes
split completely in L/K if and only if they split completely in M/K. So lifting almost all primes split
completely from L to M and applying the first part, we have that M = K which implies that L = K
as desired.

68 How many quadratic extensions of Q2 are there? Q5?

Suppose L/Q2 is a quadratic extension, then by local CFT there is a surjective map

Q∗2
φL/K−−−→ Gal(L/Q2) ∼= Z/2Z

Since 2Z is trivial in the image, (Q∗2)2 will always lie in the kernel of the map so we can quotient out
by this, (Q∗2)2 = (2n × Z2)

2 ∼= 2(Z× Z2 × Z/2Z) = 2Z× 2Z2 × 1 and quotienting gives

Q∗2/(Q∗2)2 ∼= (Z× Z2 × Z/2Z)/(2Z× 2Z2 × 1) ∼= Z/2Z× Z/2Z× Z/2Z = (Z/2Z)3.

Each choice of surjective map from (Z/2Z)3 to Z/2Z gives a distinct quadratic extension. There are
8 total maps, and 1 trivial so this gives 7 quadratic extensions of Q2.

If we repeat the same process for Q5, this time we have

Q∗5/(Q∗5)2 ∼= (Z× Z5 × Z/4Z)/(2Z× 2Z5 × 2Z/4Z) ∼= Z/2Z× 1× Z/2Z

so there are 4 total maps, 1 trivial, giving 3 quadratic extensions of Q5.

These results can be verified using lmfdb. Example:
http://www.lmfdb.org/padicField/?n=2&p=5&search type=List

69 In the case of K = Q, how does the global artin map simplify?

First, we have that Qab = Q(ζ) (the extension obtained by adjoining all roots of unity) by Kronecker-
Weber.

Next, we can simplify the left hand side of the map. The kernel is the connected component of 1 in
CQ. Since Qp is totally disconnected, the connected component in each of these is simply {1} but for

40



Q∗∞ = R∗ the connected component is R+. Quotienting out by this we will show gives the product∏
p Z∗p.

Initially, the quotient will be (
∏
pQ∗p×R∗/R+)/Q∗. Take any (αp)p ∈

∏
p Z∗p and map it to the element

((αp)p× 1)/Q∗ in (
∏
pQ∗p×R∗/R+)/Q∗. We first show that this is injective. If some other (βp)p maps

here as well, then for some q ∈ Q∗, we have (qαp)p × |q|q = (βp)p × 1.

In particular, this means that q = βp/αp ∈ Z∗p for all p so q has no prime divisors in its numerator or
denominator. And since |q|/q = 1 we have that q is positive, hence q = 1 and αp = βp for all p.

Now to show surjectivity, take any (γp)p × ±1/Q∗. By the restricted product of the adeles, all but
finitely many γp lie in Z∗p already, so we need to find a choice of q that corrects the others. For each

γp /∈ Z∗p, take ap = p−νp(γp) Taking ±
∏
p ap ∈ Q∗ (sign matching original sign of element) this will

cancel out the places where γp /∈ Z∗p but will be a unit in all others, keeping those in Z∗p that were
already. By matching sign this ensures that we have something of the form (αp)p × 1/Q∗ which is in
the image of our map which is thus surjective and an isomorphism.

Putting it altogether we have for Q the isomorphism∏
p

Z∗p
φQ−→ Gal(Q(ζ)/Q)

which makes sense becaause the Galois group on the right is the inverse limit of (Z/nZ)∗ which does
indeed give the structure on the left.

70 How do the idele class group and the ideal class group relate?

There is a surjective map CK → ClK . We define first by taking IK → JK where (αν) 7→
∏
ν=νp

pνp(αp).
Quotienting out by principal elements on both sides gives a surjection CK → ClK .

71 What is the Hilbert Class Field? How can we see that it has that galois group?

The hilbert field of K is the maximal abelian unramified extension of K. It’s Galois group is isomoprhic
to the ideal class group for K.

We can see this is the Galois group from the global artin map. The field is the largest abelian
unramified extension, so we want the smallest open finite index subset of CK and show that this is
also the kernel of the map CK → ClK .

The norm group must contain all the finite O∗p since these map to the inertia subgroups. There is
some fussing with infinite places, but the kernel of the map CK → ClK is (

∏
p-∞O∗p ×

∏
ν|∞K

∗
ν )K∗

which is the smallest group that contains all O∗p .
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