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Memorization (– key terms –)

Chapter 1: Preliminaries on Complex Analysis

1.1 Complex Numbers and Complex Plane

1 region, connected open/closed set, path connected

region = open and connected set in C.

connected open/closed cannot be written as a union of proper open/closed subsets.

path connect = all points can be connected by a path

2 compact, diameter of a set

compact = closed and bounded ⇐⇒ every sequence has subsequence conv. to a point in Ω ⇐⇒
open coverings have finite subcover

diam(Ω) = supz,w∈Ω |z − w|

3 complex convergence of a series and Cauchy sequences

zn → w iff lim |zn − w| → 0. converges ⇐⇒ real and complex parts converge

Cauchy Seq- |zn − zm| → 0 and n,m→∞
4 absolutely and uniform convergence

absolute convergence
∑
|zn| converges (in the real sense)

convergence of functions fn ∀x and ε > 0 there is an N s.t. for n ≥ N |fn(x)− f(x)| < ε then fn → f .

uniform convergence for fn functions for every ε there is an N s.t. for n ≥ N |fn(x)− f(x)| < ε ∀x.

If fn → f uniformly, then limn

∫ b
a fndx =

∫ b
a fdx.

1.2 Complex Functions on C

5 holomorphic function

the limit limh→∞
f(z+h)−f(z)

h exists for all possible ways h→ 0.

6 Cauchy-Riemann Equations

If f(x, y) = u(x, y) + iv(x, y) then ∂u
∂x = ∂v

∂y and ∂v
∂x = −∂u

∂y .

7 power series for ez, sin(z), cos(z)

ez =
∑∞

n=0
zn

n! sin(z) =
∑∞

n=0(−1)n z2n+1

(2n+1)! cos(z) =
∑∞

n=0(−1)n z2n

(2n)!

8 radius of convergence

|z| < R the series converges absolutely, |z| > R the series diverges, |z| = R is undetermined

9 Hadamard formula

1/R = lim sup |an|1/n

10 analytic function

a function that has a power series expansion at a point in a neighborhood of it (⇐⇒ holomorphic)
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1.3 Integration along curves

11 smooth/piece-wise smooth curve, length of a curve

z(t) : [a, b]→ C parameterized curve. Smooth means z′(t) exists and continuous, piece-wise if can be
chopped up to be smooth on pieces.

length(γ) =
∫ b
a |z
′(t)|dt.

12 closed curve, simple curves

closed - endpoints match (i.e. is a loop)

simple - non-intersecting

13 path integral
∫
γ f(z)dz

let z(t) be a parameterization on [a, b] then
∫
γ f(z)dz =

∫ b
a f(z(t))z′(t)dt.

14 primitive of a function

a function F (z) that is holomorphic and F ′(z) = f(z) in the specified region.

Chapter 2: Cauchy’s Theorem and Its Applications

2.1 Goursat’s Theorem

15 Goursat’s Theorem

If f is holomorphic on an open set containing a triangle T and its interior, then∫
T
f(z)dz = 0

2.2 Local Existence of Primitives & Cauchy Theorem in a Disc

16 Cauchy’s theorem on a disc

If f is holomorphic on a disc and its boundary, then∫
D
f(z)dz = 0

17 toy contours

regions in C with clearly defined ‘interiors’ like a circle, triangle, square/rectangle, keyhole

2.3 Evaluation of some Integrals

18 keyhole contour (and its limit)

corridor gets narrow and cutout circle shrinks around the point

19 semi-cirlce contour without origin

outer radius grows to infinity and inner radius shrinks to the origin point
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2.4 Cauchy’s Integral Formulas

20 Cauchy’s integral formula for f

f holomorphic on an open set containing disc D and its closure
C be the boundary circle (with positive orientation)

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ

for any z ∈ D (integral vanished outside of D)

21 proof sketch for Cauchy’s integral formula for f

key hole contour with z removed

limit of the corridor gets two circles by cancellation
∫
C +

∫
Cε

= 0

rewriting to get f(z) in the numerator, can explicitly compute inner circle

solve for
∫
C to get desired result.

22 Cauchy’s integral formula for f (n)

f holomorphic on an open set containing circle C and its interior

f(z)(n) =
n!

2πi

∫
C

f(ζ)

(ζ − z)n+1
dζ

for any z in the inerior of C.

Key idea: f being holomprhic =⇒ infinitely differentiable

23 Cauchy inequalities

f holomprhic in an open set containing closure of disc D centered at z0 with radius R

|f (n)(z0)| ≤ n!||f ||C
Rn

where ||f ||C = supz∈C |f(z)| (suprememum on the boundary of the disc)

proof by cauchy integral formula for derivative and taking magnitude

24 power series representation of holomorphic functions

If f holomorphic on a disc (and its closure) around a point z0, then f has power series expansion

f(z) =
∞∑
n=0

an(z − z0)n an =
f (n)(z0)

n!

for all z ∈ D the disc around the point.

Proof Idea: take the cauchy integral formula for f(z) and expand 1/ζ − z in terms of z0 then by
uniform convergence interchange the sum with the integral.

25 Liouville’s Theorem

If f is entire (holomorphic on C) and bounded (|f | ≤M) then f is constant!!

26 Fundamental Theorem of Algebra and its proof

Let P (z) be a nonconstant polynomial in C[z]. Suppose it has no roots in C, then 1/P (z) has no poles
and so is entire. To show it is bounded we will split C into two regions. To show 1/P (z) bounded,
meaning |1/P (z)| ≤M for some M , we must show that |P (z)| ≥ 1/M so is bounded below.
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Dividing P (z)/zn = an + 1
z (Q(1/z)). As z → ∞, the second term goes to 0, so for some R, it is

less than |an|/2 and so |P (z)/zn| ≥ |an|/2 so where |z| > R, |P (z)| ≥ |z|n|an|/2. So in this region,
|P (z)| ≥ Rn|an|/2 so is bounded from below outside |z| > R. Inside, it is a finite region with no poles
and it continuous, so will be bounded below also. (if not, there will be a sequence of points of f with
f(zn)→ 0 which means that f(lim zn) = 0).

since 1/P (z) is entire and bounded, it is constant and so P (z) is constant, a contradiction. So we
must have some roots.

2.5.1 Morera’s Theorem

27 Morera’s Theorem

Morera’s Theorem. Let f be a continuous function in the open disc D. If for every triangle T
contained in D, ∫

T
f(z)dz = 0

then f is holomorphic.

Chapter 3: Meromorphic Functions and the Logarithm

3.1 Zeros and Poles

28 zeros, order/multiplicity

f(z) has a zero at z0 when f(z0) = 0

order of z0 is n where f(z) = (z − z0)nh(z) near z0, where h(z) is holomorphic and h(z0) 6= 0.

29 poles, order/multiplicity

f has a pole at z0 when 1/f extended to 0 at z0 is holomorphic.

multiplicity is the zero multiplicity of 1/f at z0, that is f(z) = (z − z0)−nh(z), h(z) is holomorphic.

30 simple poles/zeros

simple zeros/poles have order 1

31 principal part of f

Given f with a pole of order n at z0, we have the expansion near z0

f(z) =
a−n

(z − z0)n
+ · · ·+ a−2

(z − z0)2
+

a−1

(z − z0)
+G(z)

where G(z) is holomorphic.

The principal part is where f has the pole, i.e. f(z)−G(z).

32 residue of f at pole z0

Given f with a pole of order n at z0, we have the expansion near z0

f(z) =
a−n

(z − z0)n
+ · · ·+ a−2

(z − z0)2
+

a−1

(z − z0)
+G(z)

where G(z) is holomorphic.

The residue is a−1, i.e. the coefficient for (z − z0)−1 in the expansion of f .
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33 limit formula for (simple) poles

simple pole: resz0 f = limz→z0(z − z0)f(z)

general pole: resz0 f = limz→z0
1

(n−1)!

(
d
dz

)n−1
(z − z0)nf(z)

3.2 The Residue Formula

34 residue formula

f holomorphic except for poles at z0, . . . , zn in a region Ω containing C,∫
C
f(z)dz = 2πi

n∑
i=1

reszi f

3.3 Singularities and Meromorphic Functions

35 isolated singularities

Removable if we can define f(z0) is such a way to make f holomorphic including z0.

Pole if 1/f(z) has removable singularity with 1/f(z0) = 0 making 1/f holomorphic near z0

Essential Singularity not a pole or removable singularity

36 meromorphic functions

Meromorphic functions: functions have poles at z0, z1, z2, . . . points and holomorphic elsewhere
with no limit points of zi’s in the region.

37 example of essential singularity

f(z) = e1/z has essential singularity at z = 0.

38 Laurent Series

A laurent series about z0 is f(z) =
∑∞

n=−∞ an(z − z0)n for some region {r < |z − z0| < R}.

3.4 The Argument Principles and Applications

39 Argument Principle

f is meromorphic in Ω containing a cirlce C and it’s interior with no poles/zeros along C then

1

2πi

∫
C

f ′(z)

f(z)
dz = # of zeros of f inside C −# of poles of f inside C

both zeros and poles counted with multiplicity

40 Rouche’s Theorem

Let f and g be holomorphic in Ω containing a circle C and |f(z)| > |g(z)| for all z ∈ C. Then f and
f + g have the same number of zeros inside C.

41 Open Mapping Theorem

If f is holomorphic and nonconstant on some region Ω then f is an open map.

42 Maximum Modulus Principle

If f is holomorphic and nonconstant on some region Ω then f does not attain a max modulus on Ω.
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Complex Analysis Quals Questions (– best questions –)

Chapter 1: Preliminaries on Complex Analysis

1.1 Complex Numbers and the Complex Plane

1 Show there is no total ordering on C.

Total ordering - a < b or a > b or a = b for all a, b. a < b =⇒ a+ c < b+ c for all a, b, c if a < b and
0 < c then ac < bc.

Case 1: i < 0 0 < −i so 0 < (−i)2 = −1 meaning 1 < 0 so then −i < 0 so 0 < i so 0 < −i2 = 1.

Case 2: i > 0 i2 = −1 > 0 then 0 > 1 but also −i > 0 so then −i2 = 1 > 0

2 If Ω is open, show that Ω is path connected if and only if it is connected.

Assume open and pathwise-connected: If disconnected, Ω = Ω1 t Ω2 . Take ω1 ∈ Ω1 and ω2 ∈ Ω2

which are path connected by γ.

Parameterize by z : [0, 1]→ Ω and take t∗ = supt{t : z(s) ∈ Ω1 : 0 ≤ s < t}.
contradiction with z(t∗): first, z(t∗) ∈ Ω1. Well Ω1 is open, so there is a region around z(t∗) contained
in Ω1. The path contains a nearby point for t∗ < t∗∗ in this region, but then t∗ is not the supremum
unless t∗ = 1 but z(1) = ω2 /∈ Ω1.

Assume open and connected: Take ω1 ∈ Ω. Define Ω1 ⊂ Ω as the set of all point path-connected to ω

Show Ω1 is open, closed, and nonempty. (all points in a disc are path connected!)

Open: take any point, since Ω is open, there is a region around this point in Ω, and within an open
disc all points are connected, so these points are also in Ω1, hence it is open.

Closed: Take a point not in Ω1, since Ω is open there is a small disc containing the pt. If any of those
points are in Ω1, then extend path to the point, contradiction so then the disc is in ΩC

1 which is open.

Nonempty: well ω1 ∈ Ω1.

Then Ω = Ω1 t Ω2 and Ω is connected so Ω = Ω1, showing that Ω is path connected.

3 Example of a set that is connected but not path connected. Any examples of path-
connected but not connected?

Connected but not path-connected:

Topologist’s Sine Curve: all points (x, sin(1/x)) with the origin.

Connected: points get arbitrarilty close to origin so cannot separate it (all other points lie on a
continuous function and so cannot be separated)

Not-path-connected: cannot find a path between origin and any point on the sin curve. Suppose there
is a path γ given by f : [0, 1]→ C then by ε−δ there is a region close to 0 such that |f(x)−(0, 0)| < 1/2
but can always come a little closer on the sine curve to get back to (x, 1) which will exceed the 1/2
bound.

Path-connected =⇒ connected: If disconnected, take a path γ from ω1 ∈ Ω1 to ω2 ∈ Ω2.
Then γ : [0, 1] → Ω is continuous, and so γ−1(Ω1) and γ−1(Ω2) for a disjoint cover of [0, 1], which is
connected, contradiction.

11



1.2 Functions on the Complex Plane

4 Show that a continuous function on a compact set is bounded and attains a max/min.

f cont. on Ω compact (closed and bounded). Take x 7→ |f(x)| which is continuous Ω→ R.

First, show that this is bounded. If not, then there is a sequence f(xn) that is unbounded, but Ω is
compact, so there is a convergent subsequence converging to a point y ∈ Ω. Thus there is a convergence
subsequence f(xk)→ f(y) which is bounded, contradiction.

Second, this converges to a point f(x) for some x. Taking the least upper bound, take a sequence
of points getting closer to the bound f(xn). Again, a subsequence converges to z and f(xn) → f(z)
which must also converge to the least upper bound, i.e. a maximum of f .

5 Give an example of a function and a set on which the function does not attain a
max/min.

f(z) = z on C.

6 Show that holomorphic functions are continuous.

Holomorphic - has complex derivative , Continuous - ε-δ definition with complex distances

Given that f is holomorphic, the limit of limh→0
f(z0+h)−f(z)

h exists, so we can write f(z0 +h)−f(z) =
Lh + hΨ(h) where Ψ → 0 as h → 0. Then for ε > 0 choose δ such that |Lh + hΨ(h)| < ε for all
|h| < δ. Then |z − z0| < δ means z = z0 + h for |h| < δ gives the desired ε claim.

7 Derive the Cauchy-Riemann Equations.

Take f(x, y) = u(x, y) + iv(x, y) and derivative twice, once by (x+ h, y)→ (x, y) (real approach) and
once by (x, y + h)→ (x, y) (complex approach).

Express derivative both times in terms of partial derivatives of u and v (keeping track of real/maginary)
then equate real and imaginary parts!

8 Give an example of a non-holomorphic function that is differentiable as f(x, y).

f(z) = (z) ie f(x, y) = x− iy so u = x and v = −y. These are diff but do not satisfy Cauchy-Riemann.

Limit does not exist when approaching by h = h ∈ R versus h = ih, one gives +1 and one gives −1.

9 Find the radius of convergence of ez, sin z,
∑

n z
n, cos z.

radius of convergence = R such that for all |z| < R the function/series converges.

ez =
∑

n≥0
zn

n! , radius of convergence R =∞.

show absolute convergence for
∑

n≥0 |zn/n!| =
∑

n≥0 |z|n/n!.

ratio test... lim |z|n+1n!
|z|n(n+1)n! = lim |z|

n! = 0 < 1 so this converges for all |z| and thus all z ∈ C.

sin(z) =
∑

n≥0(−1)n z2n+1

(2n+1)! radius of convergence R =∞ (similar for cos)

show absolute convergence ... ratio test lim |z|2n+3(2n+1)!
|z|2n+1(2n+3)(2n+2)(2n+1)!

= lim |z|2
(2n+3)(2n+2) = 0 < 1 so this

converges for all |z| and thus all z ∈ C.∑
n≥0 z

n radius of convergence R = 1

ratio test for absolute convergence lim |z|n+1/|z|n = lim |z| = |z| < 1 converges absolutely.
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10 State and prove Hadamards formula for the radius of convergence.

Formula: Let R be the radius of convergence of a series
∑

n≥0 anz
n, then

1/R = lim sup |an|1/n

where 1/0 =∞ and 1/∞ = 0.

Proof:

If |z| < R then converges.... L = 1/R so that |z|L < 1 choose ε such that (L+ ε)|z| = r < 1. By defn
L = lim sup |an|1/n so |an|1/n ≤ L + ε. Then |an||z|n ≤ (L + ε)n|z|n = rn and r < 1. So the series∑
rn converges so too does

∑
anz

n.

If |z| > R then diverges... |z|L > 1 so choose ε > 0 with (L − ε|z|) = r > 1. Then by lim sup there
exists a sequence of nk such that |ank

|1/nk > L− ε. So take this subseries which is greater than
∑
rn

which diverges to infinity.

11 Show that the derivative of f(z) =
∑
anz

n, f ′(z) =
∑
nanz

n, has the same radius of
convergence.

Use Hadamard formula. limn1/n = 1 and given that the derivative is term by term differentiated with
coefficients nan this will have the same lim sup and thus the same radius of convergence.

12 Explain why complex differentiable is stronger than real differentiable.

Holomorphic means that a function is differentiable, but all holomorphic functions are inifnitely dif-
ferentiable. For real functions, there are differentiable functions that are not infinitely differentiable,
such as, x · |x| (derivative is 2|x|). So we see that complex differentiation is much stronger.

Complex differentiation also implies the function is analytic (has a power series expansion at every
point), which is not true for real functions.

One reason for this is in the definition of complex differentiation, we account for infinitely many ways
that h→ 0 wheras for h ∈ R it can approach 0 only from above or below.

1.3 Integration along curves

13 Give a parameterization of the unit circle and integrate f(z) = 1/z along this.

Take γ represented by z(t) = eit for 0 ≤ t ≤ 2π postiively orientied closed loop of the unit circle.∫
γ
f(z)dz =

∫ 2π

0
f(z(t))z′(t)dt =

∫ 2π

0

1

eit
ieitdt =

∫ 2π

0
idt = 2πi

14 Show that f(z) = 1/z does not have a primitive defined on C.

primitive = holomorphic function F such that F ′ = f .

If f is continuous (which it is) and has a primitive (which it doesnt), then taking γ along the unit
circle, then

∫
γ f(z)dz = 0 however by direct computation (question above) this is 2πi 6= 0 so f cannot

have a primitive.

15 Compute the integral of f = zn for any n along the curve γ = eit 0 ≤ t ≤ 2π.∫
γ f(z)dz =

∫
γ z

ndz =
∫ 2π

0 eitnieitdt = i
∫ 2π

0 eit(n+1)dt = i

[
1

i(n+1)e
it(n+1)

∣∣∣2π
0

]
= 1

n+1(e2πi(n+1) − e0) = 0

13



Chapter 2 : Cauchy’s Theorem and Its Applications

2.1 Goursat’s Theorem

16 State and sketch a proof of Goursat’s Theorem.

Goursat’s Theorem: If f is holomorphic on an open set containing a triangle T and its interior, then∫
T
f(z)dz = 0.

Break T into four triangles by bisecting each side. Choose the triangle that maximizes |
∫
T ′ f(z)dz| so

that |
∫
T f(z)dz| ≤ 4|

∫
Tn
f(z)dz|.

want to use the diameter of Tn and perimeter to bound the size here.

Basic Idea: f differs from a function with a primitive (contstant and linear pieces) by a function
that goes to zero on small regions. Taking smaller and smaller triangles we leverage this asymptotic
behavior.

Since f is holomorphic, f(z) = f(z0) + f ′(z0)(z − z0) + φ(z)(z − z0) where φ → 0 and z → z0.
Using the primitives for f(z0) (a constant) and f ′(z0)(z− z0) a linear polynomial, we have

∫
f(z)dz =∫

φ(z)(z − z0). The max value of this is εndn where εn is max of φ on Tn and dn = diamTn = d0/2
n.

|
∫
Tn

f(z)dz| = |
∫
Tn

φ(z)(z − z0)dz| ≤ ‖φ(z)‖Tn‖z − z0‖Tnpn = εndnpn = 4−nεnd0p0

so then |
∫
T f(z)dz| ≤ εnd0p0 → 0 as εn → 0 as n→∞ so the integral is 0.

2.2 Local primitives and Cauchy on a disc

17 Give a sketch of why holomorphic functions have primitives in discs. Where does
Goursat’s Theorem come in?

Take the path γ from origin (0, 0)→ (x, 0)→ (x, y) [representing z = x+ iy]

define F (z) =
∫
γ f(z)dz, this will be the primitive.

Claims: holomorphic on the disc and F ′(z) = f(z)

z+h and z paths can be split into the direct path and triangles/rectangles, which are 0 by Goursat’s.

Then as h→ 0 the path length goes to 0 we can control the extra part showing derivative is f(z)

18 What is a toy contour? Give some examples. Why do we use them?

Toy contours are regions in C where ‘interior’ is easily defined.

Examples: circles, triangles, squares and rectangles, keyholes and cutouts of regular shapes

We use these to develop Cauchy results in simpler (more common) cases and make intuitive sense of
these results

Favorite toy contour: keyhole, its so clever and funny! (also looks like Gallifreyan writing)

19 How do we define the primitive for Cauchy’s theorem in toy contours (not just
discs)?

Use right angled path to connect any point to a fixed base point, any two paths will differ by rectan-
gles/triangles, which in an integral will vanish by Goursat’s so this is well-defined.

14



20 State Cauchy’s Theorem. How would you prove it using Green’s Theorem?

Cauchy’s Theorem: If f holomorphic on a region Ω and γ a smooth closed loop in Ω then
∫
γ f(z)dz =

0.

Proof by Green’s Theorem:

Write f(z) = u+ iv and dz = dx+ idy then∫
γ
f(z)dz =

∫
γ
(u+ iv)(dx+ idy) =

∫
γ
(udx− vdy) + i

∫
γ
(vdx+ udy)

(Can also make more rigorous than “dz = dx + idy” by taking a parametrization of γ and then
multiplying everything out and recognizing

∫
u(a(t), b(t))a′(t)dt =

∫
γ udx)

Green’s Theorem:
∫
C(Ldx+Mdy) =

∫∫
D((∂Mdx −

∂L
dy )dxdy

So using Cauchy-Riemann Equations:∫
γ(udx− vdy) =

∫∫
D(−∂v

dx −
∂u
dy )dxdy = −

∫∫
D(∂vdx + ∂u

dy )dxdy = −
∫∫
D(0dxdy = 0∫

γ(vdx+ udy) =
∫∫
D((∂udx −

∂v
dy )dxdy =

∫∫
D((∂udx −

∂v
dy )dxdy =

∫∫
D(0dxdy = 0

So
∫
γ f(z)dz = 0.

21 What is Goursat’s Theorem? How can you use Goursat’s Theorem to prove Cauchy’s
Theorem without assuming f is continuously differentiable (only diff. at every
point)?

Goursat’s Theorem: If f differentiable everywhere, then
∫
T f(z)dz = 0 for any triangle T in the

region that f is differentiable.

Goursat’s =⇒ Cauchy’s Theorem:

Idea: Use Goursat to construct a primitive for f in the region, using the primitive
∫
γ fdz = 0.

Primitive is F (z) =
∫
γz
f(ω)dω where γz is a taxicab curve from a fixed point z0 to z. Using Goursat’s,

show that this is differentiable and it’s derivative is f (by canceling the curves to z and z + h using
triangles/rectangles) and so F is the primitive.

2.3 Evaluation of some Integrals

22 How would you compute
∫∞

0
1−cos(x)

x2
dx?

1) rewrite as the real part of some complex function, in this case

f(z) =
1− eiz

z2

(
Re(f) =

1− cos(x)

x2

)
2) singularity at z = 0 so want to avoid the origin

contour: semi-circle with origin removed

3) this is even function, so could take
∫∞
−∞ and divide by 2

evaluate the pieces of the integral, and take limits so R→∞ and ε→ 0

15



2.4 Cauchy’s Integral Formulas

23 State Cauchy’s Integral Formula. How is it derived?

Cauchy’s Integral Formula: For f holomorphic on a disc D and its closure (with boundary C)

f(x) =
1

2πi

∫
C

f(ω)

ω − z
dω

for any z ∈ D.

Proof Sketch:

keyhole contour along C with z cutout.

let corridor go to 0 to get two circles in the integral

explicity compute the inner circle by rewriting f(ω) and then solve for bigger integral.

24 What are some consequences of Cauchy’s Integral Formula(s)?

• bounds on derivative magnitude (so called Cauchy’s Inequalities)

take Cauchy’s integral formulas for derivatives and bound the size

• holomorphic =⇒ analytic (power series)

take the cauchy integral formula for f(z) and expand 1/ζ − z in terms of z0

by uniform convergence interchange the sum with the integral.

• Liouville’s Theorem: entire + bounded =⇒ constant

show f ′ = 0 everywhere via cauchy inequalities

|f ′(z)| ≤ B/R for global bound B and any radius R, let R→∞ gives f ′ → 0

• Fundamental Theorem of Algebra

prove by Liouville’s Theorem

• uniqueness of analytic continuations

power series expansion in a small region yields information about the global functions

25 State and prove Liouville’s Theorem. What if f is entire and f (n) is bounded? What
happens if only Im(f) is bounded?

Louiville’s Theorem: If f is entire and bounded, f is contant.

Proof:

f bounded, means that |f | ≤ B for some B on all of C, hence

By Cauchy Integral formula,

|f ′(z0)| =
∣∣∣∣ 1

2πi

∫
C

f(ω)

(ω − z)2
dω

∣∣∣∣ =
1

2π

∣∣∣∣∫ 2π

0

f(z0 +Reiθ)

(Reiθ)2
Rieiθdθ

∣∣∣∣ ≤ 1

2π
|f(z)

R
||C |2π =

||f ||C
R
≤ B

R

for any R, letting R→∞, we have that |f ′| → 0 for every point z0 ∈ C.

f ′ = 0 implies that f is constant
(because 0 =

∫
γ f
′dx = f(γ1)− f(γ0) so all values of f are the same, i.e. constant)

Modification 1: f entire, f (n) bounded
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Then Apply Louiville to f (n) (which is also entire since f is inifnitely diff.) so f (n) is constant.

Then work backwards to get that f is a polynomial of degree n

Well f ′ polynomial of degree k (using taylor series representation and power series differentiation)
gives f is a polynomial of degree k + 1.

Iterating gives that f (n−1) is linear, f (n−2) is quadratic ... fn−(n−1) = f ′ is polynomial of degree n− 1
so f is polynomial of degree n.

Modification 2: Only Im(f) is bounded.

We can reach the same conclusion that f is constant!

Consider F (z) = eif(z) which is again entire. It is also bounded because

|e−if | = |e−i(Re(f)+iIm(f))| = |e−iRe(f)||eIm(f)| = |eIm(f)| ≤ eM

where M is a bound for Im(f). So by Louiville’s e−if(z) is constant, so f(z) is constant too.

26 Prove the Fundamental Theorem of Algebra. (Hint: Liouville)

Sketch:

Suffices to show that a polynomial has a single root then iterate.

If P (z) has no roots, then 1/P (z) has no poles and is entire.

Working with a polynomial, show that 1/P (z) is bounded.

Liouville’s Thereom shows that 1/P (z) is constant, so P (z) is constant.

Details: Let P (z) be a nonconstant polynomial in C[z]. Suppose it has no roots in C, then 1/P (z)
has no poles and so is entire. To show it is bounded we will split C into two regions. To show 1/P (z)
bounded, meaning |1/P (z)| ≤M for some M , we must show that |P (z)| ≥ 1/M so is bounded below.

Dividing P (z)/zn = an + 1
z (Q(1/z)). As z → ∞, the second term goes to 0, so for some R, it is

less than |an|/2 and so |P (z)/zn| ≥ |an|/2 so where |z| > R, |P (z)| ≥ |z|n|an|/2. So in this region,
|P (z)| ≥ Rn|an|/2 so is bounded from below outside |z| > R. Inside, it is a finite region with no poles
and it continuous, so will be bounded below also. (if not, there will be a sequence of points of f with
f(zn)→ 0 which means that f(lim zn) = 0).

since 1/P (z) is entire and bounded, it is constant and so P (z) is constant, a contradiction. So we
must have some roots.

27 Give some examples where Liouville Theorem does not apply.

entire but not bounded: f(z) = z (not constant!)

bounded but not entire: piecewise functions, e.g. f(z) = 1 inside unit disc and f(z) = 0 outside (not
constant!)

28 Let f be holomorphic and lie in a strip of ez, that is |f(z)− ez| < R for some R. What
can you conclude about f?

f(z) = ez + c, by applying Liouvilles theorem to g(z) = f(z)− ez which is holomorphic and bounded,
so it is constant and f(z)− ez = c for some c ∈ C.

29 What is a holomorphic function? What properties does it have?

Definition: holomorphic = complex differentiable (derivative formula for h ∈ C h→ 0)

• holomorphic functions are infinitely differentiable by inductively applying cauchy integral formula

• holomorphic functions have power series expansions in little regions (local encoding of whole
function)

17



• holomomorphic functions are determined by their behavior in small regions, giving rise to unique
analytic continuation

30 What is an analytic continuation? Why is it unique?

Given f analytic on Ω an analytic continuation is an analytic (i.e. holomorphic) function on a larger
region Ω′ ⊃ Ω that agrees with f on the smaller region

These continuations are unique because if there are two separate continuations, then they agree with
each other on a small region, so they agree everywhere they are both analytic, hence they are unique.

2.5.1 Morera’s Theorem

31 State and prove Morera’s Theorem. What is its significance?

Morera’s is a converse to Cauchy’s Theorem (holomorphic =⇒
∫
fdz = 0 )

Morera’s Theorem. Let f be a continuous function in the open disc D. If for every triangle T
contained in D, ∫

T
f(z)dz = 0

then f is holomorphic.

Significance:

A converse to Cauchy’s Theorem, which gives that holomorphic =⇒
∫
fdz = 0

Proof: Method is to construct, F , the anti-derivative of f which will be holomorphic, and hence
infinitely differentiable. Since F ′ = f then f is holomorphic too.

Define F (z) =
∫
γz
f(z)dz where γz connects a fixed point to z. Then using the fact that

∫
T fdz

vanishes, F (z + h) − F (z) =
∫
η f(ω)dω for a small curve connecting z to z + h and continuity of f

shows that as h→ 0 we have F (z + h)− F (z)/h→ f(z) so F is holomorphic and F ′ = f .
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Chapter 3: Meromorphic Functions and the Logarithm

3.1 Zeros and Poles

32 What are the poles of 1/(1 + z4)? What are their orders?

Well 1/f = 1 + z4 which has zeros when z4 = −1, i.e. at the primitive 8th roots of unity. There are 4
distinct such roots, so each is a simple pole.

33 Find the residue of f(x) = ez

z3
at z = 0.

Method: series expansion.

ez = 1 + z +
z2

2
+
z3

3!
+
z4

4!
+ · · ·

so then

f(z) =
ez

z3
=

1

z3
+

1

z2
+

1

2z
+

1

3!
+
z

4!
+ · · ·

so the residue is 1/2 corresponding to the 1/z term.

3.2 The Residue Formula

34 Find the poles and residues of 1/ sin(z).

Poles of 1/ sin(z) are the zeros of sin(z). Using the formulas

ex+iy = ex(cos(y) + i sin(y)) sin(z) =
eiz − e−iz

2i

the zeros are exactly when e2iz = 1 and which precisely when z = nπ for n ∈ Z.

These are all simple zeros, can tell by differentiating or taking limz→nπ
z−nπ
sin(z) and taking L’Hopitals to

get a nonzero limit.

35 Is the residue formula usually used to compute residues when integrals are known
or integrals when residues are known? Give an example.

There are other ways to compute residues (limit formula, power series, Cauchy Integral Formula) so it
is often used to compute integrals, in particular complex real integrals which simplify when extended
to a contour in C.

Example:
∫∞

0
1

1+x2
dx.

Extend to the complex integral
∫
γR

1
1+z2

dz where γR is the upper half plane semi circle with radius R.
Let CR denote the curved part of γR.

Since the residues of 1/1 + z2 are ±i, and only i lies inside our contour we can use the residue formula
to compute

∫
γR

1
1+z2

dz = 2πiResi(f) = 2πi 1
2i = π.

Now splitting up the integral we have
∫
γR

1
1+z2

dz =
∫ R
−R

1
1+z2

dz+
∫
CR

1
1+z2

dz. In the limit as R→∞,

this first piece becomes
∫∞
∞

1
1+x2

dx = 2
∫∞

0
1

1+x2
dx. The second piece will go to zero since 1

1+z2
grows

like 1/R2 but the length of the arc grows linearly in R, so the integral grows like 1/R and goes to 0.
Combining this we have

π = lim
R→∞

∫
γR

1

1 + z2
dz = 2

∫ ∞
0

1

1 + x2
dx+ 0 =⇒

∫ ∞
0

1

1 + x2
dx =

π

2

19



36 Evaluate
∫∞
−∞

1
1+x4

dx.

Let f(z) = 1
1+z4

and γ the upper half circle of radius R.∫∞
−∞

1
1+x4

dx = Re
(

limR→∞(
∫
γ f(z)dz −

∫
CR

f(z)dz)
)

By residue theorem,∫
γ

1

1 + z4
dz = 2πi resζ8 f(z) = 2πi

1

(ζ8 − ζ3
8 )(ζ8 − ζ5

8 )(ζ8 − ζ7
8 )

= 2πiζ−3
8

1

(1− ζ2
8 )(1− ζ4

8 )(1− ζ6
8 )

= 2πiζ5
8

1

(1− i)(1 + 1)(1 + i)
= 2πi(−1)ζ8

1
4 = −1

2πi(
√

2
2 + i

√
2

2 ) = π

√
2

4
− iπ

√
2

4

Note that as |z| → ∞, 1
1+z4

≈ 1
z4

so then∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ 2πR

4
||f ||CR

≈ 1
2πR

1

R4
→ 0 as R→∞

So then
∫∞
−∞

1
1+x4

dx = Re
(

limR→∞(
∫
γ f(z)dz −

∫
CR

f(z)dz)
)

= Re
(
π
√

2
4 − iπ

√
2

4

)
= π

√
2

4

3.3 Singularities and Meromorphic Functions

37 What are the possible isolated singularities? How can we detect them?

Removable if we can define f(z0) is such a way to make f holomorphic including z0.

Pole if 1/f(z) has removable singularity with 1/f(z0) = 0 making 1/f holomorphic near z0

Essential Singularity not a pole or removable singularity

Riemann’s theorem on removable singularities: If f is bounded near z0, then z0 is removable.

Corollary: isolated singularity is pole ⇐⇒ |f(z)| → ∞ as z → z0.

Corollary: If f is neither bounded nor tending to ∞ then f has essential singularity.

38 What are meromorphic functions? How do they relate to rational functions?

Meromorphic functions: functions have poles at z0, z1, z2, . . . points and holomorphic elsewhere
with no limit points of zi’s in the region.

Holomorphic =⇒ Meromorphic

Example on C: f(z) = ez (holormorphic) but not meromorphic on extended complex plane (including
the point at infinity)

Example: f(z) = p(z)/q(z) rational functions

However if meromorphic on Ĉ then is a rational function (ratio of polynomials), i.e. characterized (up
to scaling) by its zeros/poles and their orders.

Proof Sketch:

Use behavior at ∞ to bound poles to finitely many points (F (z) = f(1/z) holomorphic near 0)

Subtract off the principal parts for each pole (including ∞). This removes all poles, so entire, and no
pole at infinity means bounded so this is constant. Then rewriting gives a rational funciton.

39 What is a meromorphic function? What is a pole? Let f be holomorphic in a
punctured disc around 0. Is f meromorphic if we extend the domain to 0? Why or
why not.

Meromorphic functions: functions have poles at z0, z1, z2, . . . points and holomorphic elsewhere
with no limit points of zi’s in the region.
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Poles of f are places z0 where f is defined in a punctured disc around z0 and 1/f is holomophic in
the entire disc when extended to 0 at z0.

Not necessarily. It could be, in the case of f(z) = 1/z which has a pole at z = 0 and thus is
meromorphic. However it could also not have a pole or be holomorphic, for example f(z) = e1/z

(which has an essential singularity at z = 0.) This is not defined at z = 0 so it is not holomorphic,
and to check that it is not meromorphic we must show that it does not have a pole. If 0 were a pole,
then it has order n for some n, so that limz→0 z

ne1/z exists and is finite. However looking at the
expansion for ez,

zne1/z = zn

(
1 + z−1 +

z−2

2
+ · · ·+ z−n

n!
+
z−(n+1)

(n+ 1)!
+ · · ·

)
= zn + zn−1 + · · ·+ 1

n!
+

z−1

(n+ 1)!
+ · · ·

which we see does not have a finite limit as z → 0 since we have a 1/z still. Hence this hasa no pole
at 0 and is undefined at zero so is not meromorphic.

40 What is a Laurent Series? Do meromorphic functions always have one? Are they
unique?

Laurent Series
∑∞

n=−∞ an(z − z0)n.

Existence: If f holomorphic on r < |z−z0| < R then f has a Laurent series expansion on this region.
Take two circles in the annulus and form a keyhole contour containing any point z in the annulus.
Cauchy integral formula f(z) as the difference of the integrals along the two circles. Expand 1/w − z
to 1

w−z0
1

1− z−z0w−z0
or 1

z−z0
1

1−w−z0z−z0
depending on which cirlce makes the 1/1 − x part converge. Then

massage the expansions together aligning the summation index to get an = 1
2πi

∫
Cn

f(w)
(w−z0)n+1dw

.

f is meromorphic then for a pole z0, f is holomorphic on 0 < |z − z0| < R where R is chosen to
exclude all other poles since they have no limit points. Then f has a laurent expansion and it will
have finitely many negative terms. (either by definition, or take the expansion of 1/f in terms of order
of zero to get order of pole)

Uniqueness: If we have two expansions for f(z) at z0 then multiply by (z − z0)−k−1 and integrate
around curve to get zero for all terms except n = k where we get 2πian so this shows that an = bn for
all n.

3.4 The Argument Principles and Applications

41 What is the argument principle? Why is it called the argument principle?

f is meromorphic in Ω containing a cirlce C and it’s interior with no poles/zeros along C then

1

2πi

∫
C

f ′(z)

f(z)
dz = # of zeros of f inside C −# of poles of f inside C

both zeros and poles counted with multiplicity

It is called this because if there were a logarithm of f defined in the region (not always true!) then
log(f(z)) = log |f(z)| + 2πiarg(f(z)) and the derivative of this would be f ′(z)/f(z) so the integral
represents the change in argument (since the real log is well defined) around the circle.

42 What is Rouche’s Theorem? Prove it.

Rouche’s Theorem Let f and g be holomorphic in Ω containing a circle C and |f(z)| > |g(z)| for
all z ∈ C. Then f and f + g have the same number of zeros inside C.
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Proof. Define ft(z) = f(z) + tg(z) for t ∈ [0, 1]. We want to apply the argument principle to
ft so check that it is meromorphic in the region and has no zeros/poles on C. Since f and g are
both holomorphic this function is holomorphic and thus also has no poles. If it had a zero on C that
ft(z) = f(z)+tg(z) = 0 for some z ∈ C, so then f(z) = tg(z) meaning |f(z)| = |tg(z)| = t|g(g)| ≤ |g(z)|
since t ≤ 1 but this contradicts our assumed inequality. Hence ft has no zeros, so let nt = 1

2πi

∫
C
f ′t(z)
ft(z)

dz

which is the number of zeros of ft inside C (no poles so that part drops). Since f, g are holomorphic,
and ft does not vanish on C our expression f ′t/ft is jointly continuous in z and t so nt will be continuous
in t. However nt is also integer valued, so that means it must be constant so n0 = n1 implying that f
and f + g have the same number of zeros.

43 Let Ω be a open domain with boundary C and suppose f is holomorphic mapping C
to 0. What can you conclude about f?

f will have to zero as well. By the max modulus principle, the modulus of f on Ω will be bounded
by the value of f on the boundary which is 0. Put another way, if f is non-constant, by the open
mapping theorem f(Ω) is open and the boundary C maps to the boundary of f(Ω). However 0 is the
boundary only of the set {0} which is not open, so f must not be non-constant so f(z) = c and if
c 6= 0 then taking a limit within Ω towards the boundary gives a contradiction. Hence f(z) = 0 on Ω.

44 What are some consequences of the argument principle?

Argument Principle =⇒ Rouche’s Theorem =⇒ open mapping theorem =⇒ max modulus principle

45 What can we say topologically about holomorphic functions that are non-constant?

They are open maps (Open Mapping Theorem).

Proof. Let f be a holomorphic, non-constant function on Ω. Let w0 = f(z0) be a point in the image,
we want to show that there is an open neighborhood of w0 contained in the image of f .

Since f is holomorphic and non-constant, no accumulation points of zeros, so choose δ > 0 such that
for all |z − z0| = δ we have f(z) 6= w0. And let ε > 0 be a lower bound |f(z) − w0| ≥ ε for all z in
the circle. Now take any w in an ε ball of w0, that is |w − w0| < ε. Then |w − w0| < ε ≤ |f(z)− w0|
on the disc |z − z0| = δ so applying rouche’s theorem f(z) − w0 has the same number of zeros as
g(z) = f(z)−w0 +w−w0 = f(z)−w and since there is at least one zero, we have some z′ such that
0 = g(z′) = f(z′)− w so w is in the image of f for all |w − w0| < ε.

46 State and prove the maximum modulus principle.

Maximum Modulus Principle. f holomorphic and non-constant on an open region Ω then f does
not attain a maximum on Ω.

Proof. This is acheived by the open mapping theorem. Since f is holomorphic and non-constant in
Ω, the open mapping theorem says that f is an open map.

Suppose w0 = f(z0) is a maximum for f on Ω, then |f(z)| ≤ |f(z0)| for all z ∈ Ω. Taking a small
neighborhood U of z0, we have that f(U) is an open neighborhood containing f(z0) = w0. But w0

cannot be a maximum in an open neighborhoor and f(U) lies entirely in the image of f so w0 is not
a maximum modulus for f on Ω.

47 Let f be a holomorphic from the unit disc to itself. Suppose f(0) = 0. What can we
conclude about f(z)/z? Where does the image of f(z)/z lie? Now suppose |f(z0)| = |z0|
for some nonzero z0, what can you say?

First, f(z)/z is also holomophic, by considering its power series expansion and noting that the constant
term is 0.

By the maximum modulus principle, f(z)/z attains its maximum on the boundary, where |z| = 1 so
|f(z)/z| ≤ |f(z)/1| = |f(z)| ≤ 1 (even though f may not be defined on the boundary, we can make

22



sense of this via limits towards the boundary). This implies that f(z)/z : D → D is also a holomorphic
map from the unit disc to itself.

Now assume |f(z0)| = |z0| for some nonzero z0, then |f(z0)/z0| = 1 so we see that f attains its
maximum modulus inside Ω which means that f(z)/z must actually be constant, that is f(z)/z = c
and since |c| = |f(z0)/z0| = 1 we know |c| = 1. Rewriting we have f(z) = cz where c = eiθ which
corresponds to a rotation of the unit disc. This is called Schwarz’s Lemma.
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