÷			÷		
10					

Previous Results

Background

Construction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Noetherian rings with unusual prime ideal structures

Anya Michaelsen

Williams College

January 19, 2018

Introduction	Previous Results	Background	Construction
Background			

Remark

In this talk, a ring is a commutative ring with unity.

Definition

An **ideal** is an additively closed subset I of a ring R, such that for $a \in I$, $r \in R$, $ra \in I$. A **prime ideal** is a proper ideal P such that if $rs \in P$, then either $r \in P$ or $s \in P$.

Definition

Given a ring R, the **spectrum** of a R, denoted Spec R, is the set of all its prime ideals.

Introd	uction	Previous Results	Background	Construction
Pre	evious Results	5		
	Question			
	Given a poset X (commutative) (, when can X ring R ?	be realized as the spectrum of a	
	Example			
		X	$\operatorname{Spec} \mathbb{Q}[[x,y]]$	
		$egin{array}{c} M \ \ c \ \ (0) \end{array}$	$egin{array}{c} (x,y) \ & ert \ c \ & ert \ (0) \end{array}$	

Introduction	Previous Results	Background	Construction
Previous Results			

Theorem (Hochster)

Provided necessary and sufficient conditions for when a poset is the spectrum of a ring.

Question

Given a poset X, when can X be realized as the spectrum of a (commutative) ring R with [property]?

Definition

A **Noetherian** ring is one in which every ideal is finitely generated.

Introduction	Previous Results	Background	Construction
Previous Res	ults		

Question

Does there exist a (nontrivial) uncountable Noetherian ring with a countable spectrum?

Ring	Uncountable?	Countable Spec?
$\mathbb{Q}[x,y]$	no	yes
$\mathbb{Q}[[x,y]]$	yes	no

Theorem (Colbert, 2016)

There exists an *n*-dimensional uncountable Noetherian ring with countable spectrum for any $n \ge 0$.

Background

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Regular local rings

Definition

A regular local ring (*RLR*) is a local ring, (R, M), such that M has a minimal set of generators $M = (r_1, \ldots, r_n)$ where $n = \dim R$.

Definition

A ring R is **regular** if R_P is a RLR for every $P \in \operatorname{Spec} R$.

Examples: If k is a field

- k and $k[x_1, \ldots, x_n]$ are regular rings
- k and $k[[x_1, \ldots, x_n]]$ are RLRs

ï			-1				
	τ	ro					

Background

Background

Definition

A Noetherian local ring $(A, A \cap M)$ is **excellent** if

- For all $P \in \operatorname{Spec} A$, $\widehat{A} \otimes_A L$ is regular for every finite field extension L of A_P/PA_P .
- \bigcirc A is universally catenary

Lemma

Given A with completion $T = \mathbb{Q}[[x_1, \ldots, x_n]]$, A is excellent if for each $P \in \operatorname{Spec} A$ and $Q \in \operatorname{Spec} T$ with $Q \cap A = P$, $(T/PT)_Q$ is a regular local ring (RLR).

・ロト・日本・日本・日本・日本・日本

Introduction	Previous Results	Background	Construction
Result			

Theorem (AM)

There exists an *n*-dimensional uncountable excellent regular local ring with a countable spectrum for any $n \ge 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	F Tevious Results	Background	Construction
Construction			
Given $n \geq 2$,			

```
\mathbb{Q}[x_1,\ldots,x_n] \subset B \subset \mathbb{Q}[[x_1,\ldots,x_n]] = T
         Spec \mathbb{Q}[x_1,\ldots,x_n]:
                   (x_1,\ldots,x_n)
                          N<sub>0</sub>
                          \aleph_0
                          (0)
```

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Construction

Theorem (AM)

There exists an *n*-dimensional uncountable excellent regular local ring with a countable spectrum for any $n \ge 0$.

O The Base Ring, S

- $\mathbb{Q}[x_1,\ldots,x_n] \subset S \subset \mathbb{Q}[[x_1,\ldots,x_n]] = T.$
- If $s \in pT \in \operatorname{Spec} T$, then $pu \in S$ for some $u \in T$.
- S will be excellent, countable, with $\widehat{S}=T$
- Oncountability
 - To S we will adjoin uncountably many units from T
 - Preserve the cardinality of the spectrum

Introduction	Previous Results	Background	Construction
Construction			

Theorem (AM)

There exists an *n*-dimensional uncountable excellent regular local ring with a countable spectrum for any $n \ge 0$.

Second Excellence

- Adjoin elements so that for $b \in B$, $bT \cap B = bB$.

Lemma

Every finitely generated ideal of B is extended from S. Hence, $IT \cap B = IB$ for finitely generated ideals.

Lemma

The ring B is Noetherian with completion T. Hence B is a RLR.

Introduction	Previous Results	Background	Construction
Construction			

Second Excellence

- Adjoin elements so that for $b \in B$, $bT \cap B = bB$.

Lemmas

- Every finitely generated ideal of B is extended from S.
- $IT \cap B = IB$ for finitely generated ideals $I \subseteq B$.
- The ring B is Noetherian with completion T. Hence B is a RLR and has dimension n.

Theorem (AM)

There exists an *n*-dimensional uncountable excellent regular local ring with a countable spectrum for any $n \ge 0$.

Background

Construction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Acknowledgments

Advising

Susan Loepp, PhD. Department of Mathematics & Statistics Williams College

Funding and Resources

Clare Boothe Luce Fellowship SMALL REU (NSF DMS-1659037) Williams College