

INTRODUCTION

Question. Given a poset X, when can X be realized as the spectrum of a commutative ring R?

Hochster provided necessary and sufficient conditions for when a poset is the sprectrum of a ring [1]. We extend the question by placing restrictions on the ring *R*, focusing on Noetherian rings. A simple class of spectra to consider are countable ones with uncountable rings.

Question. *Does there exists a nontrivial uncountable* Noetherian ring with a countable spectrum?

This question was unknown until recently when Colbert provided the following result[2]:

Theorem. There exists, for any $n \ge 0$, an ndimensional uncountable Noetherian ring with a *countable spectrum.*

We extended this result to excellent RLRs.

ALGEBRA BACKGROUND

Definition. A commutative ring, R, is a set with two 'well-behaved' binary operations, + and \cdot , with $0, 1 \in R \text{ and } a \cdot b = b \cdot a \text{ for all } a, b \in R.$

Examples: The integers, \mathbb{Z} and the rationals, \mathbb{Q} .

Definition. An *ideal*, $I \subseteq R$, is additively closed such that for any $a \in I$ and $r \in R$, $ar \in R$. A prime *ideal* is a proper ideal P such that $rs \in P$ implies that $r \in P \text{ or } s \in P.$

Examples: $6\mathbb{Z}$ and $n\mathbb{Z}$ are ideals in \mathbb{Z} . $3\mathbb{Z}$ and $p\mathbb{Z}$ are prime ideals in \mathbb{Z} .

Definition. *The spectrum of a ring, or* Spec *R, is the* set of all its prime ideals.

Example: Spec $\mathbb{Z} = \{ p\mathbb{Z} : p \in \mathbb{Z} \}.$

Definition. A Noetherian ring is one in which every *ideal is finitely generated.*

Definition. A local ring, (R, M) is a Noetherian ring, R, with a unique maximal ideal, M.

Definition. Given $P \in \operatorname{Spec} R$, the localization of *R at* P, R_P , *inverts all* $r \in R \setminus P$.

NOETHERIAN RINGS WITH UNUSUAL PRIME SPECTRA

COMMUTATIVE ALGEBRA BACKGROUND

Definition. A regular local ring (RLR) is a local	Defin
ing, (R, M) , such that M has a minimal set of gener-	1.
<i>tors</i> $M = (r_1,, r_n)$ <i>where</i> $n = \dim R$.	
Definition. A ring R is regular if R_P is a RLR for	2.

Examples: If *k* is a field

every $P \in \operatorname{Spec} R$.

- k and $k[x_1, \ldots, x_n]$ are regular rings
- k and $k[[x_1, \ldots, x_n]]$ are RLRs

THEOREM

Theorem 1 (AM). *There exists, for any* $n \ge 0$ *, an* ndimensional uncountable excellent regular local ring *with a countable spectrum.*[3]

We prove existence constructively, creating a ring, *B*, such that

$$\mathbb{Q}[x_1,\ldots,x_n] \subset B \subset \mathbb{Q}[[x_1,\ldots,x_n]].$$

Since $\mathbb{Q}[x_1, \ldots, x_n]$ has a countable spectrum, we use this to bound the cardinality of the spectrum of our ring, meanwhile adjoining uncountably many elements from $\mathbb{Q}[[x_1, \ldots, x_n]] = T$.

THE CONSTRUCTION

STEP 1: The Base Ring

Starting with $R_0 = \mathbb{Q}[x_1, \ldots, x_n]$, we adjoin elements t_i from $\mathbb{Q}[[x_1, \ldots, x_n]] = T$ to obtain the desired properties for our base ring.

$$R_0 \subseteq R_0[\{t_i\}] \subseteq R_1 \subseteq R_1[\{t_j\}] \subseteq R_2 \subseteq \cdots$$

Define

$$S = \bigcup_{n=0}^{\infty} R_n.$$
 Defin

Lemma. The ring S is excellent, has completion T, is countable and for any $s \in S \cap pT$ for a prime $p \in T$, there exists $u \in T$ such that $pu \in S$.

such that we maintain the following property:

Choosing uncountably many u_i , A is uncountable but, by Property (S^*) , has a countable spectrum.

ANYA MICHAELSEN WILLIAMS COLLEGE Advised by Susan Loepp

nition. A local ring (R, M) is **excellent** if For all $P \in \operatorname{Spec} R$, $\widehat{R} \otimes_R L$ is regular for every finite field extension L of R_P/PR_P . *R* is universally catenary

A sufficient condition for excellent in this context:

Lemma. Given A with $\widehat{A} = T = \mathbb{Q}[[x_1, \dots, x_n]]$, A is excellent if for each $P \in \operatorname{Spec} A$ and $Q \in \operatorname{Spec} T$ with $Q \cap A = P$, $(T/PT)_Q$ is a RLR.

OUTLINE

Outline of Construction

- 1. The Base Ring, *S*
 - $\mathbb{Q}[x_1,\ldots,x_n] \subset S \subset \mathbb{Q}[[x_1,\ldots,x_n]].$
 - If $s \in pT$, then $pu \in S$ for some $u \in T$.
 - *S* is excellent, countable, and $\widehat{S} = T$
- 2. Uncountability
 - Adjoin uncountably many units $u \in T$
 - Preserve the spectrum's cardinality
- 3. Excellence
 - Adjoin elements so that $bT \cap B = bB$.
 - Prove *B* is excellent.

STEP 2: Uncountability

To S we adjoin uncountably many units from T,

$$= S_0 \subset S_0[u_0] = S_1 \subset S_1[u_1] = S_2 \subset \cdots$$

Property (S^*). A ring $R \supseteq S$ has Property (S^*) if whenever $P \in \operatorname{Spec} T$ and $P \cap S = (0), P \cap R = (0)$.

$$A = \bigcup_{i=0}^{\infty} S_i.$$

STEP 3: Excellence To A we adjoin elements from T,

 $A = A_0 \subseteq A_0[\{t_i\}] = A_1 \subseteq A_1[\{t_i\}] = A_2 \subset \cdots$

and define

choosing the t_i 's such that

Lemma. The ring B satisfies

•
$$bT \cap$$

Using factoring property of *S* we have

Lemma. All ideals of B are extended from S.

From this we can show that all finitely generated ideals are closed up and thus:

Finally, using that *S* is excellent we have

Lemma. The ring B is excellent.

Since $\widehat{B} = T$, and dim T = n, B is *n*-dimensional. Thus, combining the above lemmas we have:

Theorem. There exists, for any $n \ge 0$, an ndimensional uncountable excellent regular local ring with a countable spectrum.

THE CONSTRUCTION (CONT.)

$$B = \bigcup_{n=0}^{\infty} A_n,$$

 $\neg B = bB$ for any $b \in B$, and

• *B* has Property (S^{\star})

Lemma. The ring B is Noetherian, has completion B = T, and B is a RLR.

REFERENCES

[1] M. Hochster. Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 142:43–60, 1969.

[2] Cory Colbert. Enlarging localized polynomial rings while preserving their prime ideal structure. J. Algebra, to appear.

[3] S. Loepp and A. Michaelsen. Uncountable ndimensional excellent regular local rings with countable spectra. *Under review, on arXiv.*